Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Apr 25;20(8):1903–1908. doi: 10.1093/nar/20.8.1903

Kinetic trapping of H-DNA by oligonucleotide binding.

B P Belotserkovskii 1, M M Krasilnikova 1, A G Veselkov 1, M D Frank-Kamenetskii 1
PMCID: PMC312305  PMID: 1579491

Abstract

Homopurine-homopyrimidine mirror repeats are known to adopt the H form under acidic pH and/or negative supercoiling. In H-DNA, one half of the purine strand enters the triplex whereas the second half is unstructured and can form duplex with complementary oligonucleotide. However, because the same oligonucleotide can form triplex with the homopurine-homopyrimidine insert, one could expect that oligonucleotide would make H-DNA thermodynamically less favorable, as was claimed by Lyamichev et al. Nucl. Acids Res. 16, 2165-2178 (1988). Now we show that complex between oligonucleotide and H-DNA, formed under conditions favorable for the H-form extrusion, is kinetically trapped in superhelical DNA and remains stable up much higher pH values than H-DNA alone. Experiments on chemical probing show that such complex exists for a plasmid with native superhelical density at pH7. We have also used this approach to demonstrate a pH-dependent structural transition in yeast telomeric sequence, d(CACACCCA)16.

Full text

PDF
1903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anshelevich V. V., Vologodskii A. V., Lukashin A. V., Frank-Kamenetskii M. D. Slow relaxational processes in the melting of linear biopolymers: a theory and its application to nucleic acids. Biopolymers. 1984 Jan;23(1):39–58. doi: 10.1002/bip.360230105. [DOI] [PubMed] [Google Scholar]
  2. Belotserkovskii B. P., Veselkov A. G., Filippov S. A., Dobrynin V. N., Mirkin S. M., Frank-Kamenetskii M. D. Formation of intramolecular triplex in homopurine-homopyrimidine mirror repeats with point substitutions. Nucleic Acids Res. 1990 Nov 25;18(22):6621–6624. doi: 10.1093/nar/18.22.6621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frank-Kamenetskii M. Gene transcription. Waves of DNA supercoiling. Nature. 1989 Jan 19;337(6204):206–206. doi: 10.1038/337206a0. [DOI] [PubMed] [Google Scholar]
  4. Lyamichev V. I., Mirkin S. M., Danilevskaya O. N., Voloshin O. N., Balatskaya S. V., Dobrynin V. N., Filippov S. A., Frank-Kamenetskii M. D. An unusual DNA structure detected in a telomeric sequence under superhelical stress and at low pH. Nature. 1989 Jun 22;339(6226):634–637. doi: 10.1038/339634a0. [DOI] [PubMed] [Google Scholar]
  5. Lyamichev V. I., Mirkin S. M., Frank-Kamenetskii M. D. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn. 1985 Oct;3(2):327–338. doi: 10.1080/07391102.1985.10508420. [DOI] [PubMed] [Google Scholar]
  6. Lyamichev V. I., Mirkin S. M., Frank-Kamenetskii M. D., Cantor C. R. A stable complex between homopyrimidine oligomers and the homologous regions of duplex DNAs. Nucleic Acids Res. 1988 Mar 25;16(5):2165–2178. doi: 10.1093/nar/16.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mirkin S. M., Lyamichev V. I., Drushlyak K. N., Dobrynin V. N., Filippov S. A., Frank-Kamenetskii M. D. DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature. 1987 Dec 3;330(6147):495–497. doi: 10.1038/330495a0. [DOI] [PubMed] [Google Scholar]
  8. Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26(2):151–226. doi: 10.3109/10409239109081126. [DOI] [PubMed] [Google Scholar]
  9. Reaban M. E., Griffin J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature. 1990 Nov 22;348(6299):342–344. doi: 10.1038/348342a0. [DOI] [PubMed] [Google Scholar]
  10. Stavnezer J. Triple helix stabilization? Nature. 1991 Jun 6;351(6326):447–448. doi: 10.1038/351447b0. [DOI] [PubMed] [Google Scholar]
  11. Voloshin O. N., Mirkin S. M., Lyamichev V. I., Belotserkovskii B. P., Frank-Kamenetskii M. D. Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature. 1988 Jun 2;333(6172):475–476. doi: 10.1038/333475a0. [DOI] [PubMed] [Google Scholar]
  12. Voloshin O. N., Veselkov A. G., Belotserkovskii B. P., Danilevskaya O. N., Pavlova M. N., Dobrynin V. N., Frank-Kamenetskii M. D. An eclectic DNA structure adopted by human telomeric sequence under superhelical stress and low pH. J Biomol Struct Dyn. 1992 Feb;9(4):643–652. doi: 10.1080/07391102.1992.10507945. [DOI] [PubMed] [Google Scholar]
  13. Wu H. Y., Shyy S. H., Wang J. C., Liu L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell. 1988 May 6;53(3):433–440. doi: 10.1016/0092-8674(88)90163-8. [DOI] [PubMed] [Google Scholar]
  14. Yagil G. Paranemic structures of DNA and their role in DNA unwinding. Crit Rev Biochem Mol Biol. 1991;26(5-6):475–559. doi: 10.3109/10409239109086791. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES