Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 May 25;20(10):2573–2580. doi: 10.1093/nar/20.10.2573

Human HeLa cell enzymes that remove phosphoglycolate 3'-end groups from DNA.

T A Winters 1, M Weinfeld 1, T J Jorgensen 1
PMCID: PMC312395  PMID: 1375993

Abstract

We have purified three chromatographically distinct human enzyme activities from HeLa cells, that are capable of converting bleomycin-treated DNA into a substrate for E. coli DNA polymerase I. The bleomycin-treated DNA substrate used in this study has been characterized via a 32P-postlabeling assay and shown to contain strand breaks with 3'-phosphoglycolate termini as greater than 95% of the detectable dose-dependent lesions. The purified HeLa cell enzymes were shown to be capable of removing 3'-phosphoglycolates from this substrate. Also 3'-phosphoglycolate removal and nucleotide incorporation were enzyme dependent. In addition, all three Hela cell enzymes have been determined to possess Class II AP endonuclease activity. The enzymes lack 3'----5' exonuclease activity and are, therefore, dissimilar to exonuclease III--an E. coli enzyme that can remove 3'-phosphoglycolate.

Full text

PDF
2573

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bases R., Hamori I., Piazza L., Maio J., Mendez F. DNA base and strand damage in X-irradiated monkey CV-1 cells: influence of pretreatment using small doses of radiation. Int J Radiat Biol. 1990 Jul;58(1):35–54. doi: 10.1080/09553009014551421. [DOI] [PubMed] [Google Scholar]
  2. Bernelot-Moens C., Demple B. Multiple DNA repair activities for 3'-deoxyribose fragments in Escherichia coli. Nucleic Acids Res. 1989 Jan 25;17(2):587–600. doi: 10.1093/nar/17.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chen D. S., Herman T., Demple B. Two distinct human DNA diesterases that hydrolyze 3'-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res. 1991 Nov 11;19(21):5907–5914. doi: 10.1093/nar/19.21.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demple B., Herman T., Chen D. S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11450–11454. doi: 10.1073/pnas.88.24.11450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gajewski E., Aruoma O. I., Dizdaroglu M., Halliwell B. Bleomycin-dependent damage to the bases in DNA is a minor side reaction. Biochemistry. 1991 Mar 5;30(9):2444–2448. doi: 10.1021/bi00223a021. [DOI] [PubMed] [Google Scholar]
  7. Giloni L., Takeshita M., Johnson F., Iden C., Grollman A. P. Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem. 1981 Aug 25;256(16):8608–8615. [PubMed] [Google Scholar]
  8. Hagensee M. E., Moses R. E. Bleomycin-treated DNA is specifically cleaved only by endonuclease IV in E. coli. Biochim Biophys Acta. 1990 Jan 30;1048(1):19–23. doi: 10.1016/0167-4781(90)90016-u. [DOI] [PubMed] [Google Scholar]
  9. Henner W. D., Grunberg S. M., Haseltine W. A. Sites and structure of gamma radiation-induced DNA strand breaks. J Biol Chem. 1982 Oct 10;257(19):11750–11754. [PubMed] [Google Scholar]
  10. Henner W. D., Kiker N. P., Jorgensen T. J., Munck J. N. Purification and amino-terminal amino acid sequence of an apurinic/apyrimidinic endonuclease from calf thymus. Nucleic Acids Res. 1987 Jul 24;15(14):5529–5544. doi: 10.1093/nar/15.14.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henner W. D., Rodriguez L. O., Hecht S. M., Haseltine W. A. gamma Ray induced deoxyribonucleic acid strand breaks. 3' Glycolate termini. J Biol Chem. 1983 Jan 25;258(2):711–713. [PubMed] [Google Scholar]
  12. Johnson A. W., Demple B. Yeast DNA 3'-repair diesterase is the major cellular apurinic/apyrimidinic endonuclease: substrate specificity and kinetics. J Biol Chem. 1988 Dec 5;263(34):18017–18022. [PubMed] [Google Scholar]
  13. Johnson A. W., Demple B. Yeast DNA diesterase for 3'-fragments of deoxyribose: purification and physical properties of a repair enzyme for oxidative DNA damage. J Biol Chem. 1988 Dec 5;263(34):18009–18016. [PubMed] [Google Scholar]
  14. Murugesan N., Xu C., Ehrenfeld G. M., Sugiyama H., Kilkuskie R. E., Rodriguez L. O., Chang L. H., Hecht S. M. Analysis of products formed during bleomycin-mediated DNA degradation. Biochemistry. 1985 Oct 8;24(21):5735–5744. doi: 10.1021/bi00342a008. [DOI] [PubMed] [Google Scholar]
  15. Niwa O., Moses R. E. Synthesis by DNA polymerase I on bleomycin-treated deoxyribonucleic acid: a requirement for exonuclease III. Biochemistry. 1981 Jan 20;20(2):238–244. doi: 10.1021/bi00505a002. [DOI] [PubMed] [Google Scholar]
  16. Pawlak A. L., Kotecki M., Ignatowicz R. Increased frequency of chromatid breaks in lymphocytes of heterozygotes of ataxia telangiectasia after in vitro treatment with caffeine. Mutat Res. 1990 Jun;230(2):197–204. doi: 10.1016/0027-5107(90)90057-b. [DOI] [PubMed] [Google Scholar]
  17. Povirk L. F., Austin M. J. Genotoxicity of bleomycin. Mutat Res. 1991 Mar;257(2):127–143. doi: 10.1016/0165-1110(91)90022-n. [DOI] [PubMed] [Google Scholar]
  18. Ramotar D., Popoff S. C., Gralla E. B., Demple B. Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol. 1991 Sep;11(9):4537–4544. doi: 10.1128/mcb.11.9.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robson C. N., Hickson I. D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991 Oct 25;19(20):5519–5523. doi: 10.1093/nar/19.20.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robson C. N., Milne A. M., Pappin D. J., Hickson I. D. Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes. Nucleic Acids Res. 1991 Mar 11;19(5):1087–1092. doi: 10.1093/nar/19.5.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanderson B. J., Chang C. N., Grollman A. P., Henner W. D. Mechanism of DNA cleavage and substrate recognition by a bovine apurinic endonuclease. Biochemistry. 1989 May 2;28(9):3894–3901. doi: 10.1021/bi00435a040. [DOI] [PubMed] [Google Scholar]
  22. Seki S., Akiyama K., Watanabe S., Hatsushika M., Ikeda S., Tsutsui K. cDNA and deduced amino acid sequence of a mouse DNA repair enzyme (APEX nuclease) with significant homology to Escherichia coli exonuclease III. J Biol Chem. 1991 Nov 5;266(31):20797–20802. [PubMed] [Google Scholar]
  23. Seki S., Ikeda S., Tsutui K., Teraoka H. Repair of X-ray-induced single-strand breaks by a cell-free system. Carcinogenesis. 1990 Jul;11(7):1213–1216. doi: 10.1093/carcin/11.7.1213. [DOI] [PubMed] [Google Scholar]
  24. Seki S., Ikeda S., Watanabe S., Hatsushika M., Tsutsui K., Akiyama K., Zhang B. A mouse DNA repair enzyme (APEX nuclease) having exonuclease and apurinic/apyrimidinic endonuclease activities: purification and characterization. Biochim Biophys Acta. 1991 Aug 9;1079(1):57–64. doi: 10.1016/0167-4838(91)90024-t. [DOI] [PubMed] [Google Scholar]
  25. Seki S., Oda T. An exonuclease possibly involved in the initiation of repair of bleomycin-damaged DNA in mouse ascites sarcoma cells. Carcinogenesis. 1988 Dec;9(12):2239–2244. doi: 10.1093/carcin/9.12.2239. [DOI] [PubMed] [Google Scholar]
  26. Steighner R. J., Povirk L. F. Effect of in vitro cleavage of apurinic/apyrimidinic sites on bleomycin-induced mutagenesis of repackaged lambda phage. Mutat Res. 1990 Feb;240(2):93–100. doi: 10.1016/0165-1218(90)90012-q. [DOI] [PubMed] [Google Scholar]
  27. Téoule R. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Apr;51(4):573–589. doi: 10.1080/09553008414552111. [DOI] [PubMed] [Google Scholar]
  28. Weinfeld M., Liuzzi M., Paterson M. C. Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: design of a 32P-postlabeling assay for apurinic sites in DNA. Biochemistry. 1990 Feb 20;29(7):1737–1743. doi: 10.1021/bi00459a011. [DOI] [PubMed] [Google Scholar]
  29. Weinfeld M., Soderlind K. J. 32P-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry. 1991 Jan 29;30(4):1091–1097. doi: 10.1021/bi00218a031. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES