Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 May 25;20(10):2597. doi: 10.1093/nar/20.10.2597

A seryl-tRNA synthetase gene is coamplified with the adenylate deaminase 2 gene in coformycin resistant Chinese hamster fibroblasts.

C Lunel 1, G Buttin 1, B R de Saint Vincent 1
PMCID: PMC312398  PMID: 1598219

Full text

PDF

Page 2597

2597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  2. Debatisse M., Hyrien O., Petit-Koskas E., de Saint-Vincent B. R., Buttin G. Segregation and rearrangement of coamplified genes in different lineages of mutant cells that overproduce adenylate deaminase. Mol Cell Biol. 1986 May;6(5):1776–1781. doi: 10.1128/mcb.6.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Debatisse M., Saito I., Buttin G., Stark G. R. Preferential amplification of rearranged sequences near amplified adenylate deaminase genes. Mol Cell Biol. 1988 Jan;8(1):17–24. doi: 10.1128/mcb.8.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Debatisse M., de Saint Vincent B. R., Buttin G. Expression of several amplified genes in an adenylate-deaminase overproducing variant of Chinese hamster fibroblasts. EMBO J. 1984 Dec 20;3(13):3123–3127. doi: 10.1002/j.1460-2075.1984.tb02268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hampel A., Enger M. D. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol. 1973 Sep 15;79(2):285–293. doi: 10.1016/0022-2836(73)90006-5. [DOI] [PubMed] [Google Scholar]
  6. Hinchman S. K., Henikoff S., Schuster S. M. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem. 1992 Jan 5;267(1):144–149. [PubMed] [Google Scholar]
  7. Kieny M. P., Lathe R., Lecocq J. P. New versatile cloning and sequencing vectors based on bacteriophage M13. Gene. 1983 Dec;26(1):91–99. doi: 10.1016/0378-1119(83)90039-2. [DOI] [PubMed] [Google Scholar]
  8. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  9. Miseta A., Woodley C. L., Greenberg J. R., Slobin L. I. Mammalian seryl-tRNA synthetase associates with mRNA in vivo and has homology to elongation factor 1 alpha. J Biol Chem. 1991 Oct 15;266(29):19158–19161. [PubMed] [Google Scholar]
  10. Robert de Saint Vincent B., Hyrien O., Debatisse M., Buttin G. Coamplification of mu class glutathione S-transferase genes and an adenylate deaminase gene in coformycin-resistant Chinese hamster fibroblasts. Eur J Biochem. 1990 Oct 5;193(1):19–24. doi: 10.1111/j.1432-1033.1990.tb19298.x. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES