Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jun 25;20(12):2955–2958. doi: 10.1093/nar/20.12.2955

Artiodactyl retroposons: association with microsatellites and use in SINEmorph detection by PCR.

J Kaukinen 1, S L Varvio 1
PMCID: PMC312422  PMID: 1377817

Abstract

During a search of polymorphic microsatellites for bovine genome mapping, we found that microsatellites often occur as tails of artiodactyl C-A retroposon elements. In this element, C (85bp) is a tRNA derivative, while A (117bp) is of unknown origin. The A element also occurs as dimer element with a connecting 27bp linker sequence comprising hexanucleotide CACTTT repeats. In 10 clones (45% of those selected deliberately for dinucleotide repeats), the microsatellite motif is associated with the C-A retroposon. In 50% of 44 database artiodactyl C-A sequences, the element also has a microsatellite tail. The microsatellite is usually a simple (CA)n repeat, but in some cases it is an apparent derivative of the linker sequence CACTTT. All but one of 33 database dimer elements have trinucleotide repeat tails (AGC)n, n = 1-9. Microsatellites, retroposons, and their truncated versions (C and/or A) often occur as clusters. We derived the consensus sequence (202bp) of the C-A element, and designed four primers for inter-SINE amplification with the aim of finding SINEmorph polymorphisms. The method is potentially powerful for rapidly producing polymorphic markers for artiodactyl genome mapping.

Full text

PDF
2955

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armour J. A., Wong Z., Wilson V., Royle N. J., Jeffreys A. J. Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucleic Acids Res. 1989 Jul 11;17(13):4925–4935. doi: 10.1093/nar/17.13.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batzer M. A., Kilroy G. E., Richard P. E., Shaikh T. H., Desselle T. D., Hoppens C. L., Deininger P. L. Structure and variability of recently inserted Alu family members. Nucleic Acids Res. 1990 Dec 11;18(23):6793–6798. doi: 10.1093/nar/18.23.6793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boehm T., Mengle-Gaw L., Kees U. R., Spurr N., Lavenir I., Forster A., Rabbitts T. H. Alternating purine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. EMBO J. 1989 Sep;8(9):2621–2631. doi: 10.1002/j.1460-2075.1989.tb08402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cole C. G., Goodfellow P. N., Bobrow M., Bentley D. R. Generation of novel sequence tagged sites (STSs) from discrete chromosomal regions using Alu-PCR. Genomics. 1991 Jul;10(3):816–826. doi: 10.1016/0888-7543(91)90468-t. [DOI] [PubMed] [Google Scholar]
  5. Cornall R. J., Aitman T. J., Hearne C. M., Todd J. A. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics. 1991 Aug;10(4):874–881. doi: 10.1016/0888-7543(91)90175-e. [DOI] [PubMed] [Google Scholar]
  6. Duncan C. H. Novel Alu-type repeat in artiodactyls. Nucleic Acids Res. 1987 Feb 11;15(3):1340–1340. doi: 10.1093/nar/15.3.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Economou E. P., Bergen A. W., Warren A. C., Antonarakis S. E. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2951–2954. doi: 10.1073/pnas.87.8.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frengen E., Thomsen P., Kristensen T., Kran S., Miller R., Davies W. Porcine SINEs: characterization and use in species-specific amplification. Genomics. 1991 Aug;10(4):949–956. doi: 10.1016/0888-7543(91)90184-g. [DOI] [PubMed] [Google Scholar]
  9. Hamada H., Seidman M., Howard B. H., Gorman C. M. Enhanced gene expression by the poly(dT-dG).poly(dC-dA) sequence. Mol Cell Biol. 1984 Dec;4(12):2622–2630. doi: 10.1128/mcb.4.12.2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Litt M., Luty J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989 Mar;44(3):397–401. [PMC free article] [PubMed] [Google Scholar]
  11. Mermer B., Colb M., Krontiris T. G. A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome. Proc Natl Acad Sci U S A. 1987 May;84(10):3320–3324. doi: 10.1073/pnas.84.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moyzis R. K., Torney D. C., Meyne J., Buckingham J. M., Wu J. R., Burks C., Sirotkin K. M., Goad W. B. The distribution of interspersed repetitive DNA sequences in the human genome. Genomics. 1989 Apr;4(3):273–289. doi: 10.1016/0888-7543(89)90331-5. [DOI] [PubMed] [Google Scholar]
  13. Nordheim A., Rich A. The sequence (dC-dA)n X (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1821–1825. doi: 10.1073/pnas.80.7.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rogaev E. I. Simple human DNA-repeats associated with genomic hypervariability, flanking the genomic retroposons and similar to retroviral sites. Nucleic Acids Res. 1990 Apr 11;18(7):1879–1885. doi: 10.1093/nar/18.7.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rogers J. H. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. doi: 10.1016/s0074-7696(08)61375-3. [DOI] [PubMed] [Google Scholar]
  16. Sinnett D., Deragon J. M., Simard L. R., Labuda D. Alumorphs--human DNA polymorphisms detected by polymerase chain reaction using Alu-specific primers. Genomics. 1990 Jul;7(3):331–334. doi: 10.1016/0888-7543(90)90166-r. [DOI] [PubMed] [Google Scholar]
  17. Skowronski J., Plucienniczak A., Bednarek A., Jaworski J. Bovine 1.709 satellite. Recombination hotspots and dispersed repeated sequences. J Mol Biol. 1984 Aug 15;177(3):399–416. doi: 10.1016/0022-2836(84)90292-4. [DOI] [PubMed] [Google Scholar]
  18. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  19. Stallings R. L., Ford A. F., Nelson D., Torney D. C., Hildebrand C. E., Moyzis R. K. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics. 1991 Jul;10(3):807–815. doi: 10.1016/0888-7543(91)90467-s. [DOI] [PubMed] [Google Scholar]
  20. Watanabe Y., Tsukada T., Notake M., Nakanishi S., Numa S. Structural analysis of repetitive DNA sequences in the bovine corticotropin-beta-lipotropin precursor gene region. Nucleic Acids Res. 1982 Mar 11;10(5):1459–1469. doi: 10.1093/nar/10.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  22. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
  23. Weinreb A., Katzenberg D. R., Gilmore G. L., Birshtein B. K. Site of unequal sister chromatid exchange contains a potential Z-DNA-forming tract. Proc Natl Acad Sci U S A. 1988 Jan;85(2):529–533. doi: 10.1073/pnas.85.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Winterø A. K., Fredholm M., Thomsen P. D. Variable (dG-dT)n.(dC-dA)n sequences in the porcine genome. Genomics. 1992 Feb;12(2):281–288. doi: 10.1016/0888-7543(92)90375-3. [DOI] [PubMed] [Google Scholar]
  25. Zuliani G., Hobbs H. H. A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am J Hum Genet. 1990 May;46(5):963–969. [PMC free article] [PubMed] [Google Scholar]
  26. de Martynoff G., Pohl V., Mercken L., van Ommen G. J., Vassart G. Structural organization of the bovine thyroglobulin gene and of its 5'-flanking region. Eur J Biochem. 1987 May 4;164(3):591–599. doi: 10.1111/j.1432-1033.1987.tb11168.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES