Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jun 25;20(12):2977–2983. doi: 10.1093/nar/20.12.2977

The two main rDNA size classes of Ascaris lumbricoides: comparison of transcription termination and spacer organization.

E Müller 1, H Neuhaus 1, H Tobler 1, F Müller 1
PMCID: PMC312426  PMID: 1620592

Abstract

Structural and functional analyses were carried out to compare transcription termination and intergenic spacer organization between the two heterogeneous ribosomal DNA size classes of Ascaris lumbricoides. By performing mung bean nuclease mapping in vivo, we localized the 3' end of the mature 26S rRNA to the same position in both forms. This site coincides with the in vivo and in vitro transcription termination site of the 40S-precursor rRNA from both rDNA size classes. We demonstrate that the 3' boundary of sequences necessary for faithful transcription termination extends 35 bp beyond the end of the 26S rRNA gene and that these sequences are perfectly conserved within the two size classes. The intergenic spacers of both rDNA size classes have been completely sequenced; they are 2410 bp and 1937 bp long and show a sequence homology of 92.8%. There is no evidence for the presence of reiterated termination sites or promoters within the relatively short intergenic spacers of the two rRNA gene classes.

Full text

PDF
2977

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Back E., Felder H., Müller F., Tobler H. Chromosomal arrangement of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Res. 1984 Feb 10;12(3):1333–1347. doi: 10.1093/nar/12.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Back E., Müller F., Tobler H. Structural organization of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Res. 1984 Feb 10;12(3):1313–1332. doi: 10.1093/nar/12.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Back E., Van Meir E., Müller F., Schaller D., Neuhaus H., Aeby P., Tobler H. Intervening sequences in the ribosomal RNA genes of Ascaris lumbricoides: DNA sequences at junctions and genomic organization. EMBO J. 1984 Nov;3(11):2523–2529. doi: 10.1002/j.1460-2075.1984.tb02167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker S. M., Platt T. Pol I transcription: which comes first, the end or the beginning? Cell. 1986 Dec 26;47(6):839–840. doi: 10.1016/0092-8674(86)90795-6. [DOI] [PubMed] [Google Scholar]
  5. Bateman E., Paule M. R. Promoter occlusion during ribosomal RNA transcription. Cell. 1988 Sep 23;54(7):985–992. doi: 10.1016/0092-8674(88)90113-4. [DOI] [PubMed] [Google Scholar]
  6. Briner G., Müller E., Neuhaus H., Back E., Müller F., Tobler H. Localization of the in vivo and in vitro transcription initiation site and comparative analysis of the flanking sequences in the two main size classes of Ascaris lumbricoides rDNA. Nucleic Acids Res. 1987 Aug 25;15(16):6515–6538. doi: 10.1093/nar/15.16.6515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broach J. R., Li Y. Y., Feldman J., Jayaram M., Abraham J., Nasmyth K. A., Hicks J. B. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1165–1173. doi: 10.1101/sqb.1983.047.01.132. [DOI] [PubMed] [Google Scholar]
  8. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  9. Elion E. A., Warner J. R. An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Jun;6(6):2089–2097. doi: 10.1128/mcb.6.6.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis R. E., Sulston J. E., Coulson A. R. The rDNA of C. elegans: sequence and structure. Nucleic Acids Res. 1986 Mar 11;14(5):2345–2364. doi: 10.1093/nar/14.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grummt I., Roth E., Paule M. R. Ribosomal RNA transcription in vitro is species specific. Nature. 1982 Mar 11;296(5853):173–174. doi: 10.1038/296173a0. [DOI] [PubMed] [Google Scholar]
  12. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  13. Koch W., Edwards K., Kössel H. Sequencing of the 16S-23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell. 1981 Jul;25(1):203–213. doi: 10.1016/0092-8674(81)90245-2. [DOI] [PubMed] [Google Scholar]
  14. Lund E., Dahlberg J. E., Lindahl L., Jaskunas S. R., Dennis P. P., Nomura M. Transfer RNA genes between 16S and 23S rRNA genes in rRNA transcription units of E. coli. Cell. 1976 Feb;7(2):165–177. doi: 10.1016/0092-8674(76)90016-7. [DOI] [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  16. Müller E., Neuhaus H., Tobler H., Müller F. Unusual transcription termination of the ribosomal RNA genes in Ascaris lumbricoides. EMBO J. 1990 Sep;9(9):2849–2856. doi: 10.1002/j.1460-2075.1990.tb07474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pustell J., Kafatos F. C. A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):643–655. doi: 10.1093/nar/12.1part2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reeder R. H., Labhart P., McStay B. Processing and termination of RNA polymerase I transcripts. Bioessays. 1987 Mar;6(3):108–112. doi: 10.1002/bies.950060304. [DOI] [PubMed] [Google Scholar]
  19. Reeder R. H. rRNA synthesis in the nucleolus. Trends Genet. 1990 Dec;6(12):390–395. doi: 10.1016/0168-9525(90)90298-k. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Selker E. U., Yanofsky C., Driftmier K., Metzenberg R. L., Alzner-DeWeerd B., RajBhandary U. L. Dispersed 5S RNA genes in N. crassa: structure, expression and evolution. Cell. 1981 Jun;24(3):819–828. doi: 10.1016/0092-8674(81)90107-0. [DOI] [PubMed] [Google Scholar]
  22. Skryabin K. G., Eldarov M. A., Larionov V. L., Bayev A. A., Klootwijk J., de Regt V. C., Veldman G. M., Planta R. J., Georgiev O. I., Hadjiolov A. A. Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res. 1984 Mar 26;12(6):2955–2968. doi: 10.1093/nar/12.6.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sollner-Webb B., Reeder R. H. The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis. Cell. 1979 Oct;18(2):485–499. doi: 10.1016/0092-8674(79)90066-7. [DOI] [PubMed] [Google Scholar]
  24. Tautz D., Dover G. A. Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J. 1986 Jun;5(6):1267–1273. doi: 10.1002/j.1460-2075.1986.tb04356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wellauer P. K., Reeder R. H., Dawid I. B., Brown D. D. Arrangement of length heterogeneity in repeating units of amplified and chromosomal ribosomal DNA from Xenopus laevis. J Mol Biol. 1976 Aug 25;105(4):487–505. doi: 10.1016/0022-2836(76)90230-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES