Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jun 25;20(12):3069–3072. doi: 10.1093/nar/20.12.3069

The ensemble reactions of hydroxyl radical exhibit no specificity for primary or secondary structure of DNA.

S E Rokita 1, L Romero-Fredes 1
PMCID: PMC312439  PMID: 1320253

Abstract

Hydroxyl radical reacts at numerous sites within nucleic acids to form a wide range of derivatives yet the conformational specificity of only one of these processes, direct strand fragmentation, has received much attention to date. Since the deleterious effects of this radical are not likely limited to strand fragmentation in vivo, this report examined the conformational specificity expressed in a more general manner. For this, modification of DNA was induced by the hydroxyl radical generating system of H2O2 and Fe-EDTA. The ensemble rate of oxidation (nucleobase + deoxyribose backbone) was determined from the overall consumption of a series of oligonucleotides that were designed to model random coils and double helixes containing complementary and noncomplementary base pairing. The resulting pseudo-first order rate constants derived from this model system were relatively unaffected by nucleotide sequence or secondary structure and varied from only 0.022 to 0.048 s-1. Consequently, the indiscriminant nature of hydroxyl radical appears to persist beyond strand fragmentation to include nucleobase oxidation as well.

Full text

PDF
3069

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alden C. J., Kim S. H. Solvent-accessible surfaces of nucleic acids. J Mol Biol. 1979 Aug 15;132(3):411–434. doi: 10.1016/0022-2836(79)90268-7. [DOI] [PubMed] [Google Scholar]
  2. Aruoma O. I., Halliwell B., Dizdaroglu M. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J Biol Chem. 1989 Aug 5;264(22):13024–13028. [PubMed] [Google Scholar]
  3. Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem. 1989 Dec 5;264(34):20509–20512. [PubMed] [Google Scholar]
  4. Burkhoff A. M., Tullius T. D. Structural details of an adenine tract that does not cause DNA to bend. Nature. 1988 Feb 4;331(6155):455–457. doi: 10.1038/331455a0. [DOI] [PubMed] [Google Scholar]
  5. Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Celander D. W., Cech T. R. Iron(II)-ethylenediaminetetraacetic acid catalyzed cleavage of RNA and DNA oligonucleotides: similar reactivity toward single- and double-stranded forms. Biochemistry. 1990 Feb 13;29(6):1355–1361. doi: 10.1021/bi00458a001. [DOI] [PubMed] [Google Scholar]
  7. Celander D. W., Cech T. R. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991 Jan 25;251(4992):401–407. doi: 10.1126/science.1989074. [DOI] [PubMed] [Google Scholar]
  8. Darsillo P., Huber P. W. The use of chemical nucleases to analyze RNA-protein interactions. The TFIIIA-5 S rRNA complex. J Biol Chem. 1991 Nov 5;266(31):21075–21082. [PubMed] [Google Scholar]
  9. Deeble D. J., Schulz D., von Sonntag C. Reactions of OH radicals with poly(U) in deoxygenated solutions: sites of OH radical attack and the kinetics of base release. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Jun;49(6):915–926. doi: 10.1080/09553008514553151. [DOI] [PubMed] [Google Scholar]
  10. Dixon W. J., Hayes J. J., Levin J. R., Weidner M. F., Dombroski B. A., Tullius T. D. Hydroxyl radical footprinting. Methods Enzymol. 1991;208:380–413. doi: 10.1016/0076-6879(91)08021-9. [DOI] [PubMed] [Google Scholar]
  11. Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol. 1985;32:115–154. doi: 10.1016/s0079-6603(08)60347-5. [DOI] [PubMed] [Google Scholar]
  12. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  13. Kouchakdjian M., Bodepudi V., Shibutani S., Eisenberg M., Johnson F., Grollman A. P., Patel D. J. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry. 1991 Feb 5;30(5):1403–1412. doi: 10.1021/bi00219a034. [DOI] [PubMed] [Google Scholar]
  14. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  15. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  16. Lu M., Guo Q., Wink D. J., Kallenbach N. R. Charge dependence of Fe(II)-catalyzed DNA cleavage. Nucleic Acids Res. 1990 Jun 11;18(11):3333–3337. doi: 10.1093/nar/18.11.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Prigodich R. V., Martin C. T. Reaction of single-stranded DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid. Biochemistry. 1990 Sep 4;29(35):8017–8019. doi: 10.1021/bi00487a003. [DOI] [PubMed] [Google Scholar]
  18. Rokita S. E., Lau B., Romero-Fredes L. Structural dependence of oligonucleotide photooxidation. Biopolymers. 1990 Jan;29(1):69–77. doi: 10.1002/bip.360290111. [DOI] [PubMed] [Google Scholar]
  19. Rokita S. E., Romero-Fredes L. Facile interconversion of duplex structures formed by copolymers of d(CG). Biochemistry. 1989 Dec 12;28(25):9674–9679. doi: 10.1021/bi00451a020. [DOI] [PubMed] [Google Scholar]
  20. Rubin C. M., Schmid C. W. Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res. 1980 Oct 24;8(20):4613–4619. doi: 10.1093/nar/8.20.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sagripanti J. L., Kraemer K. H. Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J Biol Chem. 1989 Jan 25;264(3):1729–1734. [PubMed] [Google Scholar]
  22. Tullius T. D., Dombroski B. A., Churchill M. E., Kam L. Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Methods Enzymol. 1987;155:537–558. doi: 10.1016/0076-6879(87)55035-2. [DOI] [PubMed] [Google Scholar]
  23. Tullius T. D., Dombroski B. A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science. 1985 Nov 8;230(4726):679–681. doi: 10.1126/science.2996145. [DOI] [PubMed] [Google Scholar]
  24. Williams L. D., Goldberg I. H. Selective strand scission by intercalating drugs at DNA bulges. Biochemistry. 1988 Apr 19;27(8):3004–3011. doi: 10.1021/bi00408a051. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES