Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2012 Jun 26.
Published in final edited form as: Tetrahedron. 2011 Jun 24;67(25):4485–4493. doi: 10.1016/j.tet.2011.05.002

Microwave-assisted multicomponent reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones

Shu-Liang Wang a, Chuang Cheng a, Fei-Yue Wu a, Bo Jiang a, Feng Shi a, Shu-Jiang Tu a,*, Trideep Rajale b, Guigen Li b,*
PMCID: PMC3124679  NIHMSID: NIHMS299503  PMID: 21731115

Abstract

Microwave-assisted three-component reaction has been established for the regioselective synthesis of benzo[f]azulen-1-ones. The reaction was performed in aqueous media under microwave irradiation by using readily available and inexpensive starting materials. A total of 38 examples were examined to show a broad substrate scope and good overall yields (70–89%). The present new synthesis shows attractive green chemistry characteristics, such as the use of water as reaction media, concise one-pot conditions, short reaction periods (7–24 min), easy work-up/purification and reduced waste production without the use of any strong acids or metal promoters.

Keywords: Tetronic acid, Benzo[f]azulen-1-ones, Microwave-assisted multicomponent reaction, Aqueous media, Green synthesis

1. Introduction

Heterocycles containing benzodiazepine rings belong to important building blocks because of their remarkable depressant activity in central nervous system1 and their being one of the most widely prescribed class of psychotropics.1h-i In addition, some of these compounds also possess bioactivities on analgesic, sedative ans antidepressive as well as hypnotic activities.2 On the other hand, the derivatives of tetronic acid (tetrahydrofuran-2,4-dione) play an essential role in medicinal chemistry3 by serving as HIV-1 protease inhibiting4, anti-inflammatory,5 antifungal,6 antibiotic,7 insecticidal,8 analgesic,9 anticoagulant10 and antiepileptic11 agents. Consequently, benzoazulen-1-one derivatives containing both benzodiazepine and tetronic acid motifs would provide novel leading structures for combinatorial drug-discovery research.

A careful literature survey revealed that benzo[f]azulen-1-one derivatives have been synthesized by the condensation reaction of 4-(2-aminophenylamino)furan-2(5H)-one with aldehyde in normal organic solvents.12 However, the substrate scope of this reaction is limited. It also suffered by other shortcomings, such as multiple steps, long reaction times, low overall yields and environmental unfriendly and uneconomical. So far, there have been a few benzo[f]azulen-1-one compounds produced via this method. The continuing search for new efficient approaches to benzo[f]azulen-1-ones in terms of mild reaction conditions, operational simplicity, economic viability, eco-friendliness and selectivity remains challenging.

In the past several years, our groups and several others have developed a series of multicomponent domino reactions (MDRs) that can provide easy accesses to multifunctionalized heterocyclic structures of chemical and pharmaceutical interest.1316 Especially, we established a new four-component domino reaction for an efficient synthesis of multifunctionalized quinazoline derivatives.13a The reaction is easily performed by simply mixing readily available starting materials, aromatic aldehydes, cyclopentanone and cyanoacetamide with K2CO3 in ethylene glycol under microwave (MW) irradiation. Interestingly, when aliphatic aldehydes were employed to replace their aromatic counterparts for the above MDR reaction, the reaction was found to undergo along another pathway leading to the formation of multi-functionalized tricyclo[6.2.2.01,6]dodecanes.13b Recently, we have also found that the MDR of Meldrum’s acid, aromatic aldehydes and electron-rich heteroaryl-amines in aqueous phase under microwave irradiation (MW) led to the multifunctionalized spiro{[1,3]dioxanes-pyridine}-4,6-dione with high chemo- regio- and stereoselectivity and good yields.13d

As a continuation of our research devoted to the development of multicomponent domino reactions,1315 in this communication we would like to report a new green chemistry approach to benzo[f]azulen-1-one derivatives that are of chemical and biomedical importance (Scheme 1). This reaction was achieved by reacting benzene-1,2-diamines, tetronic acid and aldehydes in aqueous phase under microwave irradiation without use of any metal catalyst as represented in Scheme 1.

Scheme 1.

Scheme 1

The synthesis of benzoazulen-1-one derivatives

Results and discussion

We started this methodolody by subjecting 3,4-diaminobenzoic acid 1a to the reaction with 4-chlorobenzaldehyde 2a and tetronic acid 3 as the model case for condition optimization. As shown in Table 1, the use of glacial acetic acid (HOAc) as reaction media at 90 ºC allowed the direct conversion of 3,4-diaminobenzoic acid 1a into the corresponding benzo[f]azulen-1-ones 4a in a chemical yield of 55% under microwave irradiation (Table 1, entry 4). Other organic solvents, such as benzene, DCE, DMF, THF, ethanol and glycol gave much lower yields of 10% - 45% at the same temperature (Table 1, entries 1–3); this is due to the fact that the benzo[d]imidazoles 5 were generated as by-products. Since water is an efficient absorber for microwave irradiation, it often leads to many successful reactions under environmentally friendly conditions.1718 Under this aqueous system, the three-component reaction of 1a with 2a and 3 resulted in benzo[f]azulen-1-ones 4a with a chemical yield of 51%. The reaction proceeded rapidly to completion at 110 ºC within a few minutes. Increasing reaction temperature did not improve chemical yields. Pleasantly, we found that a higher yield of 4a (86%) was obtained when the reaction was conducted in presence of 0.1 equivalent of HOAc at 110 ºC.

Table 1.

Optimization of solvent and temperature for the synthesis of 4a under MW

Entry Solvent T/ºC Time/min Yield/%
4a 5
1 Benzene 90 16 10 61
2 DCE 90 16 15 57
3 THF 90 16 24 48
4 DMF 90 16 34 26
5 EtOH 90 16 45 21
6 Glycol 90 16 40 24
7 HOAc 90 14 55 trace
8 Water 90 16 51 trace

We then investigated the substrate scope of this reaction by subjecting a series of aromatic aldehyde 2b–i to the reaction with 3,4-diaminobenzoic acid 1a under the optimal condition. As shown in Table 2, the reaction of thiophene-2-carbaldehyde with 3,4-diaminobenzoic acid 1a was finished within 12 min to give thienyl-substituted benzo[f]azulen-1-ones 4h in 85% yield. Similarly, benzo[f]azulen-1-ones 4b–g were formed within 12–15 min in good to excellent yields of 74–89% (Table 2, entries 2–7). Moreover, aliphatic aldehydes, such as 2-phenylacetaldehyde (Table 2, entry 9) still displayed high reactivity and clean conversion under this condition. The similar situation exists for the use of 4-chlorobenzene-1,2-diamine 1b for reactions that occurred rapidly to give the desired products 4j–4n in 76–84% yields (Table 2, entries 10–14). It is worth noting that these reactions showed high regioselectivity; only one single regioisomer was generated when 3,4-diaminobenzoic acid and 4-chlorobenzene-1,2-diamine were employed as substrates. The reason for this excellent selectivity is that the amino group attached on meta position of carboxyl group on the phenyl ring shows higher nucleophilic than that on para position, favoring to condense with tetronic acid. While the halogen substitution has an ortho-para directing effect, the amino group on the para position of chloro group shows higher reactivity than that on meta-position, preferring to form enaminones from the reaction with tetronic acid.

Table 2.

Regioselective synthesis of product 4a-n under MW

graphic file with name nihms299503u1.jpg
Entry 4 R1 Time/min Yield (%)
1 4a 4-Chlorophenyl (2a) 12 86
2 4b 4-Bromophenyl (2b) 12 85
3 4c 2,4-Dichlorophenyl (2c) 12 83
4 4d 4-Nitrophenyl (2d) 11 89
5 4e 4-Methylphenyl (2e) 15 83
6 4f 4-Methoxyphenyl (2f) 15 81
7 4g 2,3-Dimethoxyphenyl (2g) 15 78
8 4h 2-Thienyl (2h) 12 74
9 4i Benzyl (2i) 16 70
10 4j 4-Chlorophenyl (2a) 10 87
11 4k 2,4-Dichlorophenyl (2b) 10 84
12 4l 4-Methylphenyl (2e) 13 81
13 4m 2-Thienyl (2h) 11 80
14 4n Benzyl (2i) 15 76

After we achieved the above mono-substituted benzene-1,2-diamine-based multicomponent reaction, we then subjected symmetric benzene-1,2-diamine (including 1c and 1d) to the reaction with aromatic aldehydes 2 and tetronic acid under the similar conditions. As shown in Table 3, the corresponding products 4 were generated in good to excellent yields of 81–92% (Scheme 2). The reaction is compatible with various substrates including aldehydes with aromatic, heteroaromatic and aliphatic ones and aromatic diamine component with both Cl and COOH substituents. The products has been unambigeously determined by X-ray structural analysis of single crystals of 4g and 4u, which were obtained by carefully evaporating solvents (Fig. 1 and 2).

Table 3.

Synthesis of products 4o-4ll under MW

graphic file with name nihms299503u2.jpg
Entry 4 R1 Time/min Yield (%)
2 4p 4-Nitrophenyl (2d) 10 81
3 4q 4-Methylphenyl (2e) 9 83
4 4r 2-Thienyl (2h) 13 78
5 4s Benzyl (2i) 12 80
6 4t 4-Chlorophenyl (2a) 15 75
7 4u 4-Bromophenyl (2b) 9 86
8 4v 2,4-Dichlorophenyl (2c) 9 86
9 4w 4-Nitrophenyl (2d) 8 88
10 4x 2-Chlorophenyl (2j) 7 85
11 4y 3-Nitrophenyl (2k) 9 84
12 4z 4-Cyanophenyl (2l) 7 87
13 4aa Phenyl (2m) 8 89
14 4bb 4-Methylphenyl (2e) 11 83
15 4cc 2-Methoxyphenyl (2n) 12 82
16 4dd 3,4,5-Trimethoxyphenyl (2o) 12 79
17 4ee 4-Dimethylaminophenyl (2p) 15 76
18 4ff 2-Thienyl (2h) 14 73
19 4gg Benzyl (2i) 11 79
20 4hh Isobutyl (2q) 15 73
21 4ii sec-butyl (2r) 16 72
22 4jj 1-Methylbutyl (2s) 17 72
23 4kk Cyclohexyl (2t) 17 76
24 4ll Isopropyl (2u) 16 75

Scheme 2.

Scheme 2

Fig. 1.

Fig. 1

ORTEP diagram of 4g

Fig. 2.

Fig. 2

ORTEP diagram of 4u

To expand the substrate scope of this reaction, the 2-formylbenzoic acid 2v and 2-formyl-4,5-dimethoxybenzoic acid 2w) were employed to react with benzene-1,2-diamine (1c, 1d, or 4,5-dimethylbenzene-1,2-diamine 1e) and tetronic acid 3 (Scheme 3). To our delight, under the above optimized conditions, these reactions proceeded smoothly to give pentacyclic isoindole-fused furo[1,4]diazepines 5a-5f in good to excellent yields (Table 4, entries 1–6). Excellent regioseclectivity was observed in this three-component reaction involving 3,4-diaminobenzoic acid and 2-formylbenzoic acid (Table 4, entries 7–8). It is worth noting that this result is significant with no literature precedent regarding the synthesis of highly functionalized isoindole-fused furo[1,4]diazepines.

Scheme 3.

Scheme 3

Table 4.

Synthesis of products 5 under MW

Entry Product Time / min Yield / %
1 5a, R4 = R2 =R3 = H 15 85
2 5b, R4 = OMe, R2 =R3 = H 18 83
3 5c, R4 = H, R2 =R3 = Me 20 88
4 5d, R4 = OMe, R2 =R3 = Me 24 86
5 5e, R4 = H, R2 =R3 = Cl 18 84
6 5f, R4 = OMe, R2 =R3 = Cl 18 82
7 5g, R4 =H, R2 = COOH, R3 = H 15 81
8 5h, R4 =OMe, R2 = COOH, R3 = H 16 80

Similar to our previous multicomponent domino processes,13 the present reaction also showed the following attractive characteristics: (1) fast reaction rates which enable the reaction to be completed within 7–17 min, which can save energy and manpower for future industrial production; (2) the environmentally friendly process in which water is used as a solvent; (3) the convenient work-up which only needs simple filtration since the products directly precipitate out after the reaction is finished, which belongs to GAP chemistry;1920 (4) readily available starting materials of aldehydes, substituted benzene-1,2-diamine and tetronic acid.

In according to a similar mechanism,12 the formation of 4 is likely to proceed via initial condensation of benzene-1,2-diamine 1 and tetronic acid 3 to give enaminone 6. The following addition of aldehydes 2 to enaminone 6 furnishes the formation of intermediate 7 which is then converted into the final procuct 4 through intramolecular cyclization (Scheme 4). The carbonyl substituent on the aromatic ring 2 was dehydrated upon the treatment with amino group, leading to the formation of pentacyclic isoindole-fused furo[1,4]diazepines. Based on this mechanism, the regioselectivity is controlled by the strong nucleophilicity of amino group on starting material 1, i.e., the formation of 4a-4n depends on the higher nucleophilicity of the amino group in the meta position of carboxyl group than in that on para position.

Scheme 4.

Scheme 4

Conclusion

In conclusion, a new microwave-assisted multi-component reaction have been established to afford benzo[f]azulen-1-one and isoindole-fused furo[1,4]diazepine derivatives that can serve as versatile building blocks for both organic and medicinal research. The reactions were conducted in aqueous solution under microwave irradiation using readily available and inexpensive starting materials. The directing effects of substituents on benzene-1,2-diamine ring have been proven to control regioselectivity efficiently. This green synthesis shows several attractive characteristics such as the use of water as reaction media, concise conditions, short reaction periods, easy work-up, and reduced waste production without the use of any strong acids or metal promoters.

Experimental section

Microwave irradiation was carried out with microwave oven Emrys Creator from Personal Chemistry, Uppsala, Sweden. Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in cm−1. 1H NMR spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO-d6 with chemical shift (δ) given in ppm relative to TMS as internal standard. HRMS (ESI) was determined by using microTOF-Q II HRMS/MS instrument (Bruker). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

General procedure for the synthesis of benzo[f]azulen-1-ones 4a

In a 10-mL reaction vial, the benzene-1,2-diamine 1a (1 mmol), tetronic acid 3 (1 mmol), acetic acid (0.1 mmol) and water (2 mL) were mixed and then stiring for 30 min. Subsequently, the aldehydes 2a (1 mmol) was added to the reaction mixture, and the reaction vial was capped and pre-stiring for 20 second. The mixture was subjected to microwave irradiation at 200W (initial power 100W, maximum power 200W) at 110 ºC, for a given time. Upon completion, monitored by TLC, the reaction mixture was cooled to room temperature, filtered to give the crude product, which was further washed by 50% EtOH to give pure product 4a.

10-(4-Chlorophenyl)-1-oxo-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diaza-benzo[f]azulene-6-carboxylic acid 4a

Pale white solid, Mp: 281–282 ºC

IR(KBr): 3373, 3323, 3134, 1725, 1691, 1672, 1601, 1571, 1390, 1197, 1164, 1133, 1051, 1012, 832, 820, cm−1

1HNMR (400 MHz, DMSO-d6): 12.53 (s, 1H, COOH), 10.10 (s, 1H, NH), 7.57 (d, J = 1.6 Hz, 1H, ArH), 7.31–7.27 (m, 3H, ArH), 7.16 (d, J = 8.8 Hz, 2H, ArH), 6.71–6.68 (m, 2H, ArH and NH), 5.08 (d, J = 4.4 Hz, 1H, CH), 4.91 (s, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C18H14ClN2O4: 357.0637; found: 357.0649.

10-(4-Bromophenyl)-1-oxo-3,4,9,10-tetrahydro-1H-benzo[b]furo[3,4-e][1,4]diazepine-6-carboxylic acid 4b

Pale white solide Mp: 272–273 ºC

IR(KBr): 3360, 3294, 1726, 1705, 1650, 1570, 1516, 1505, 1418, 1406, 1357, 1232, 1184, 1125, 1111, 1039, 1008, 827, cm−1

1HNMR (400 MHz, DMSO-d6): 12.55 (s, 1H, COOH), 10.10 (s, 1H, NH), 7.58 (1H, d, J = 1.6 Hz, ArH), 7.41 (2H, d, J = 8.4 Hz, ArH), 7.30 (dd, J = 1.6, 16.0 Hz, 1H, ArH), 7.10 (d, J = 8.4 Hz, 2H, ArH) 6.71–6.69 (m, 2H, ArH and NH), 5.07 (d, J = 4.4 Hz, 1H, CH), 4.91 (s, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C18H14BrN2O4: 401.0132; found: 401.0105.

10-(2,4-Dichlorophenyl)-1-oxo-3,4,9,10-tetrahydro-1H-benzo[b]furo[3,4-e][1,4]diazepine-6-carboxylic acid 4c

Pale white solid, Mp: 285–287 ºC

IR(KBr): 3379, 3322, 1724, 1692, 1660, 1571, 1511, 1463, 1392, 1358, 1198, 1167, 1137, 1046, 880, 855, 821, 756 cm−1

1HNMR (400 MHz, DMSO-d6): 12.58 (s, 1H, COOH), 10.21 (s, 1H, NH), 7.61 (d, J = 1.6 Hz, 2H, ArH), 7.29 (dd, J = 1.6, 16.8 Hz, 1H, ArH), 7.17 (dd, J = 2.0, 16.8 Hz, 1H, ArH), 6.83 (d, J = 8.4Hz, 1H, ArH), 6.72 (d, J = 8.4Hz, 1H, ArH), 6.36 (d, J = 4.4 Hz, 1H, NH), 5.45 (d, J = 4.4 Hz, 1H, CH), 4.94 (s, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C18H13Cl2N2O4: 391.0247; found: 391.0219.

10-(4-Nitrophenyl)-1-oxo-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diazabenzo[f]azulene-6-carboxylic acid 4d

Pale white solid, Mp: >300 ºC

IR(KBr): 3358, 3316, 3137, 1727, 1686, 1667, 1602, 1572, 1521, 1509, 1240, 1199, 1185, 1163, 1129, 1049, 1017, 820, cm−1

1HNMR (400 MHz, DMSO-d6): 12.58 (s, 1H, COOH), 10.21 (s, 1H, NH), 8.10 (d, J = 8.8 Hz, 1H, ArH), 7.62 (s, 1H, ArH), 7.41 (d, J = 8.8 Hz, 2H, ArH), 7.31 (d, J = 8.4Hz, 1H, ArH), 6.84 (d, J = 4.4 Hz, 1H, NH), 6.72 (d, J = 8.4 Hz, 1H, ArH), 5.21 (d, J = 4.0 Hz, 1H, CH), 4.94 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 172.9, 167.3, 159.2, 151.7, 146.8, 141.3, 130.4, 128.6, 124.8, 124.0, 122.5, 122.5, 121.8, 96.0, 66.7, 57.0

HRMS (ESI) m/z: calc. for [M+H+] C18H14N3O6: 368.0878; found: 368.0865.

1-Oxo-10-p-tolyl-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diazabenzo[f]azulene-6-carboxylic acid 4e

Pale white solid, Mp: 278–280 ºC

IR(KBr): 3361, 1724, 1702, 1650, 1570, 1513, 1359, 1186, 1170, 1123, 1039, 1008, 754 cm−1

1HNMR (400 MHz, DMSO-d6): 12.49 (s, 1H, COOH), 10.02 (s, 1H, NH), 7.56 (s, 1H, ArH), 7.28 (d, J = 8.0 Hz, 1H, ArH), 7.02 (t, J = 8.4 Hz, 4H, ArH), 6.69 (d, J = 8.4Hz, 1H, ArH), 6.65 (d, J = 4.0 Hz, 1H, NH), 5.05 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2), 2.19 (s, 3H, CH3)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.1, 167.3, 158.7, 142.2, 141.2, 136.3, 130.5, 129.2, 127.2, 124.6, 122.7, 122.4, 121.5, 97.3, 66.5, 57.1, 21.0

HRMS (ESI) m/z: calc. for [M+Na+] C19H16NaN2O4: 359.1003; found: 359.0991.

10-(4-Methoxyphenyl)-1-oxo-3,4,9,10-tetrahydro-1H-benzo[b]furo[3,4-e][1,4]diazepine-6-carboxylic acid 4f

Pale white solid, Mp: 251–253 ºC

IR(KBr): 3361, 3079, 1724, 1651, 1570, 1511, 1410, 1347, 1252, 1177, 1114, 1038, 1008, 831, 760 cm−1

1HNMR (400 MHz, DMSO-d6): 12.46 (s, 1H, COOH), 10.02 (s, 1H, NH), 7.55 (d, 1H, J = 1.6 Hz, ArH), 7.27 (dd, J = 1.6 Hz, 16.8 Hz, 1H, ArH), 7.05 (d, J = 8.8 Hz, 2H, ArH), 6.75 (d, J = 8.8 Hz, 1H, ArH), 6.68 (d, J = 8.4 Hz, 1H, ArH), 6.63 (d, J = 4.4 Hz, 1H, NH), 5.02 (d, J = 4.4 Hz, 1H, CH), 4.89 (s, 2H, CH2), 3.65 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+H+] C19H17N2O5: 353.1132; found: 353.1119.

10-(2,3-Dimethoxyphenyl)-1-oxo-3,4,9,10-tetrahydro-1H-benzo[b]furo[3,4-e][1,4]diazepine-6-carboxylic acid 4g

Pale white solid, Mp: >300 ºC

IR(KBr): 3366, 3326, 3250, 3074, 2973, 1720, 1643, 1574, 1514, 1484, 1415, 1393, 1348, 1280, 1259, 1053, 1041, 1000, 852, cm−1

1HNMR (400 MHz, DMSO-d6): 12.51 (s, 1H, COOH), 10.10 (s, 1H, NH), 7.60 (d, 1H, J = 1.6 Hz, ArH), 7.25 (dd, J = 2.0, 16.4 Hz, 1H, ArH), 6.86–6.83 (m, 1H, ArH), 6.77 (t, J = 8.0 Hz, 1H, ArH), 6.66 (d, J = 8.4 Hz, 1H, ArH), 6.26–6.24 (m, 1H, ArH), 6.12 (d, J = 4.4 Hz, 1H, NH), 5.42 (d, J = 4.4 Hz, 1H, CH), 4.91 (s, 2H, CH2), 3.89 (s, 3H, CH3), 3.78 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C20H18NaN2O6: 405.1058; found: 405.1073.

1-Oxo-10-thien-2-yl-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diazabenzo[f]azulene-6-carboxylic acid 4h

Pale white solid, Mp: 285–286 ºC

IR(KBr): 3336, 3305, 1720, 1696, 1652, 1572, 1508, 1404, 1353, 1267, 1227, 1144, 1043, 1007, 891, 828 cm−1.

1HNMR (400 MHz, DMSO-d6): 12.56 (s, 1H, COOH), 10.07 (s, 1H, NH), 7.55 (d, J = 0.8Hz, 1H, Thienyl-H), 7.35–7.33 (m, 1H, ArH), 7.26–7.25 (m, 1H, ArH), 6.85 (t, J = 4.0 Hz, 2H, Thienyl-H), 6.80 (d, J = 8.4 Hz, 1H, ArH), 6.77 (d, J = 4.8 Hz, 1H, NH), 5.30 (d, J = 4.4 Hz, 1H, CH), 4.88 (dd, J = 15.6, 17.8 Hz, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C16H12N2NaO4S: 351.0410; found: 351.0409.

10-Benzyl-1-oxo-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diazabenzo[f]azulene-6-carboxylic acid 4i

Pale white solid, Mp: 249–250 ºC

IR(KBr): 3524, 3350, 3299, 3132, 1688, 1637, 1573, 1516, 1497, 1422, 1353, 1277, 1252, 1231, 1190, 1129, 1047, 1027, 980 cm−1.

1HNMR (400 MHz, DMSO-d6): 12.46 (s, 1H, COOH), 9.81 (s, 1H, NH), 7.51 (d, J = 1.6 Hz, 1H, ArH), 7.37 (dd, J = 2.0, 8.0 Hz, 1H, ArH), 7.24–7.21 (m, 2H, ArH), 7.18–7.14 (m, 1H, ArH), 7.03 (d, J = 7.2 Hz, ArH), 6.78 (1H, d, J = 8.4 Hz, ArH), 6.22 (1H, d, J = 4.4 Hz, 2H, NH), 4.80 (d, J = 15.2 Hz, CH2), 4.69 (d, J = 15.2 Hz, CH2), 4.15–4.11 (m, 1H, CH), 2.85–2.81 (m, 1H, CH2), 2.71–2.65 (m, 1H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C19H17N2O4: 337.1183; found: 337.1190.

7-Chloro-10-(4-chlorophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4j

Pale white solide solid, Mp: 250–252 ºC

IR(KBr): 3345, 3273, 3140, 3095, 1715, 1666, 1621, 1563, 1499, 1420, 1398, 1363, 1186, 1057, 1031, 1014, 999, 872 cm−1.

1HNMR (400 MHz, DMSO-d6): 10.00 (s, 1H, NH), 7.31–7.29 (m, 2H, ArH), 7.15–7.13 (m, 2H, ArH), 6.90 (d, J = 8.4 Hz, 1H, ArH), 6.80–6.78 (m, 1H, ArH), 6.68–6.67 (m, 1H, ArH), 6.36 (d, J = 4.4 Hz, 1H, NH), 5.05 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C17H13Cl2N2O2: 347.0349; found: 347.0343.

7-Chloro-10-(2,4-dichlorophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4k

Pale white solid, Mp: 272–274 ºC

IR(KBr): 3387, 3274, 3088, 1722, 1710, 1628, 1569, 1501, 1464, 1411, 1354, 1331, 1237, 1184, 1103, 1046, 967, 868 cm−1.

1HNMR (400 MHz, DMSO-d6): 10.13 (s, 1H, NH), 7.64 (d, J = 2.0 Hz, 1H, ArH), 7.19 (dd, J = 2.0, 8.4 Hz, 1H, ArH), 6.96 (d, J = 8.8 Hz, 1H, ArH), 6.84 (dd, J = 2.4, 8.6 Hz, 1H, ArH), 6.82 (d, J = 8.4 Hz, 1H, ArH), 6.72 (d, J = 2.4 Hz, 1H, ArH), 6.05 (d, J = 4.4 Hz, 1H, NH), 5.41 (d, J = 4 Hz, 1H, CH), 4.94 (s, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+Na+] C17H11Cl3N2NaO2: 402.9779; found: 402.9796.

7-Chloro-10-p-tolyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4l

Pale white solid, Mp: 287–289 ºC

IR(KBr): 3346, 3248, 3092, 1716, 1667, 1654, 1564, 1499, 1420, 1405, 1364, 1331, 1187, 1057, 1032, 998, 867 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.94 (s, 1H, NH), 7.04–6.99 (m, 4H, ArH), 6.88 (d, J = 8.4 Hz, 1H, ArH), 6.77–6.75 (m, 1H, ArH), 6.66 (s, 1H, ArH), 6.31 (d, J = 4.4 Hz, 1H, NH), 5.01 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2), 2.21 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+H+] C18H16ClN2O2: 327.0895; found: 327.0878.

7-Chloro-10-(2-methoxyphenyl)-3,4,9,10-tetrahydro-1H-benzo[b]furo[3,4-e][1,4]diazepin-1-one 4m

Pale white solid, Mp: 248–251 ºC

IR(KBr): 3357, 3248, 3154, 1717, 1672, 1617, 1572, 1503, 1408, 1368, 1064, 1053,1013, 1000, 777 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.96 (s, 1H, NH), 7.18 – 7.12 (m, 1H, ArH), 7.00 (d, J = 8.0 Hz, 1H, ArH), 6.87 (d, J = 8.4 Hz, 1H, ArH), 6.75 (dd, J = 8.4, 2.0 Hz, 1H, ArH), 6.68–6.60 (m, 3H, ArH), 5.75 (d, J = 4.4 Hz, 1H, NH), 5.34 (d, J = 4.4 Hz, 1H, CH), 4.98–4.89 (m, 2H, CH2), 3.90 (s, 3H, CH3).

HRMS (ESI) m/z: calc. for [M+Na+] C18H15ClN2O3Na 365.0664; found: 365.0654.

7-Chloro-10-thien-2-yl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4n

Pale yellow solid, Mp: 294–296 ºC

IR(KBr): 3337, 3244, 3069, 1716, 1667, 1617, 1567, 1499, 1413, 1365, 1190, 1000, 868, 849, 808 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.99 (s, 1H, NH), 7.28–7.27 (m, 1H, ArH), 6.90–6.86 (m, 2H, ArH), 6.83–6.79 (m, 3H, Thienyl-H), 6.77–6.69 (m, 2H, ArH), 6.43 (d, J = 4.4 Hz, 1H, NH), 5.27 (d, J = 4.4 Hz, 1H, CH), 4.87 (dd, J = 15.6, 20.0 Hz, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C15H12ClN2O2S: 319.0303; found: 319.0290.

10-Benzyl-7-chloro-3,4,9,10-tetrahydro-2-oxa-4,9-diaza-benzo[f]azulen-1-one 4o

White solid, Mp: 234–235 ºC

IR(KBr): 3379, 3276, 3107, 3027, 1721, 1637, 1569, 1496, 1490, 11417, 1362, 1339, 1190, 1037, 1028, 983 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.77 (s, 1H, NH), 7.27 (t, J = 7.2 Hz, 2H, ArH), 7.19 (t, J = 7.8 Hz, 1H, ArH), 7.06 (d, J = 7.2 Hz, 2H, ArH), 6.87 (d, J = 8.4 Hz, 1H, ArH), 6.82–6.78 (m, 2H, ArH), 5.87 (d, J = 4.4 Hz, 1H, NH), 4.77 (dd, J = 15.2, 20.2 Hz, 2H, CH2), 4.11–4.06 (m, 1H, CH), 2.79–2.75 (m, 1H, CH2), 2.68–2.63 (m, 1H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C18H16ClN2O2: 327.0895; found: 327.0911.

6,7-Dichloro-10-(2,4-dichloro-phenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4p

Pale white solid, Mp: 211–213 ºC

IR(KBr): 3371, 3242, 3074, 1724, 1643, 1563, 1483, 1342, 1183, 1148, 1105, 1042, 1013, 879, 868 cm−1.

1HNMR (400 MHz, DMSO-d6): 10.21 (s, 1H, NH), 7.64 (d, 1H, J = 2.0 Hz, ArH), 7.21 (dd, J = 2.0, 16.8 Hz, 1H, ArH), 7.13 (s, 1H, ArH), 6.91 (s, 1H, ArH), 6.83 (d, J = 8.4 Hz, 1H, ArH), 6.19 (d, J = 4.4 Hz, 1H, NH), 5.41 (d, J = 4.4 Hz, 1H, CH), 4.95 (dd, J = 15.6, 17.4 Hz, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C17H11Cl4N2O2: 414.9570; found: 414.9551.

6,7-Dichloro-10-(4-nitro-phenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4q

Pale yellow solid, Mp: 296–297 ºC

IR(KBr): 3367, 3256, 3093, 1721, 1647, 1570, 1518, 1488, 1405, 1348, 1244, 1185, 1152, 1049, 1017, 875, 861 cm−1

1HNMR (400 MHz, DMSO-d6): 10.21 (s, 1H, NH), 8.13 (d, J = 8.4 Hz, 2H, ArH), 7.40 (d, J = 8.8 Hz, 2H, ArH), 7.12 (s, 1H, ArH), 6.89 (s, 1H, ArH), 6.64 (d, J = 4.4 Hz, 1H, NH), 5.21 (d, J = 4.0 Hz, 1H, CH), 4.96 (dd, J = 15.6, 18.6 Hz, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C17H12Cl2N3O4: 392.0200; found: 392.0178.

6,7-Dichloro-10-p-tolyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4r

Pale white solid, Mp: 282–284 ºC

IR(KBr): 3350, 3286, 3093, 1724, 1646, 1566, 1487, 1403, 1344, 1328, 1242, 1183, 1149, 1044, 1008, 873 cm−1.

1HNMR (400 MHz, DMSO-d6): 10.03 (s, 1H, NH), 7.05–6.98 (m, 5H, ArH), 6.83 (s, 1H, ArH), 6.44 (d, J = 4.4 Hz, 1H, NH), 5.01 (d, J = 4.4 Hz, 1H, CH), 4.91 (s, 2H, CH2), 2.21 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+H+] C18H15Cl2N2O2: 361.0506; found: 361.0495.

6,7-Dichloro-10-thien-2-yl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4s

Pale white solid, Mp: 261–263 ºC

IR(KBr): 3335, 3247, 3096, 2943, 1718, 1665, 1639, 1561, 1487, 1407, 1342, 1255, 1227, 1177, 1143, 1039, 1006, 876 cm−1.

1HNMR (400 MHz, DMSO-d6): 10.08 (s, 1H, NH), 7.29 (d, 1H, J = 5.2 Hz, Thienyl-H), 7.06 (s, 1H, ArH), 6.96 (s, 1H, ArH), 6.88 (m, 1H, Thienyl-H), 6.83 (d, J = 2.8 Hz, 1H, ArH), 6.55 (d, J = 4.4 Hz, 1H, NH), 5.28 d, J = 4.4 Hz, 1H, CH), 4.89 (dd, J = 15.2, 23.6 Hz, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+Na+] C15H10Cl2NaN2O2S: 374.9733; found: 374.9731.

10-Benzyl-6,7-dichloro-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4t

White solid, Mp: 276–277 ºC

IR(KBr): 3353, 3299, 3141, 3100, 3028, 1715, 1647, 1602, 1566, 1486, 1416, 1338, 1246, 1187, 1140, 1043, 1028, 987, 870 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.83 (s, 1H, NH), 7.27–7.23 (m, 2H, ArH), 7.20–7.17 (m, 1H, ArH), 7.05 (d, J = 7.2 Hz, 2H, ArH), 7.01 (s, 1H, ArH), 6.93 (s, 1H, ArH), 6.03 (d, J = 4.4 Hz, 1H, NH), 4.78 (dd, J = 15.2, 23.6 Hz, 2H, CH2), 4.12–4.08 (m, 1H, CH), 2.82–2.77 (m, 1H, CH2), 2.70–2.65 (m, 1H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C18H15Cl2N2O2: 361.0506; found: 361.0491.

10-(4-Chlorophenyl)-3,4,9,10-tetrahydro-2-oxa-4,5,9-triazabenzo[f]azulen-1-one 4u

White solid, Mp: 262–264 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568, 1508, 1478, 1390, 1365, 1062, 1052, 1032, 1011 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.87 (s, 1H, NH), 7.25 (d, J = 8.0 Hz, 2H, ArH), 7.15 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 1H, ArH), 6.77–6.69 (m, 2H, ArH), 6.59 (d, J = 7.2 Hz, 1H, ArH), 6.09 (d, J = 4.4 Hz, 1H, NH), 5.06 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.2, 159.5, 143.1, 137.5, 132.1, 131.7, 129.4, 128.4, 123.5, 123.4, 121.4, 120.1, 96.7, 66.6, 57.2

HRMS (ESI) m/z: calc. for [M+H+] C17H14ClN2O2: 313.0739; found: 313.0712.

10-(4-Bromophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4v

White solid, Mp: >300 ºC

IR(KBr): 3352, 3247, 3150, 3104, 1716, 1670, 1617, 1595, 1568, 1508, 1478, 1454, 1403, 1390, 1365, 1334, 1062, 1052, 774, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.88 (s, 1H, NH), 7.39 (d, J = 8.0 Hz, 2H, ArH), 7.09 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 1H, ArH), 6.77–6.69 (m, 2H, ArH), 6.59 (d, J = 7.6 Hz, 1H, ArH), 6.09 (d, J = 4.4 Hz, 1H, NH), 5.04 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.2, 159.5, 143.6, 137.5, 132.1, 131.3, 129.8, 123.5, 123.4, 121.4, 120.2, 120.1, 96.7, 66.6, 57.3

HRMS (ESI) m/z: calc. for [M+Na+] C17H13BrNaN2O2: 379.0053; found: 379.0037.

10-(2,4-Dichlorophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4w

White solid, Mp: 204–205 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568,1508, 1478, 1403, 1390, 1365, 1334, 1062, 1032, 774, cm−1.

1HNMR (400 MHz, DMSO-d6):10.00 (s, 1H, NH), 7.60 (s, 1H, ArH), 7.14 (d, J = 8.0 Hz, 1H, ArH), 6.96 (d, J = 8 Hz, 1H, ArH), 6.81 (m, 2H, ArH), 6.71 (t, J = 7.6 Hz, 1H, ArH), 6.58 (d, J = 7.6 Hz, 1H, ArH), 5.71 (d, J = 4.0 Hz, 1H, NH), 5.41 (d, J = 4.4 Hz, 1H, CH), 4.94 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 172.7, 160.4, 139.6, 136.6, 134.6, 132.7, 132.7, 129.3, 129.3, 127.2, 123.8, 122.2, 120.1, 96.0, 66.8, 54.8

HRMS (ESI) m/z: calc. for [M+H+] C17H13Cl2N2O2: 347.0349; found: 347.0347.

10-(4-Nitrophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4x

Yellow solid, Mp: 219–220 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568,1508, 1478, 1403, 1390, 1365, 1334, 1062, 1032, 774, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.99 (s, 1H, NH), 8.08 (d, J = 8.0 Hz, 2H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 6.94 (d, J = 7.6 Hz, 1H, ArH), 6.78 (t, J = 7.2 Hz, 1H, ArH), 6.72 (d, J = 7.2 Hz, 1H, ArH), 6.61 (d, J = 7.6 Hz, 1H, ArH), 6.26 (d, J = 4.4 Hz, 1H, NH), 5.18 (d, J = 4.4 Hz, 1H, CH), 4.94 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.1, 159.7, 151.8, 146.7, 137.1, 132.0, 128.7, 123.7, 123.7, 123.3, 121.7, 120.3, 96.0, 66.7, 57.4

HRMS (ESI) m/z: calc. for [M+H+] C17H14N3O4: 324.0979; found: 324.0956.

10-(2-Chlorophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4y

White solid, Mp: 233–235 ºC

IR(KBr):3395, 3156, 3063, 2989, 2952, 2930, 2899, 1725, 1652, 1574, 1506, 1484, 1444, 1398, 1363, 1233, 1122, 1046, 985, cm−1

1HNMR (400 MHz, DMSO-d6): 9.98 (s, 1H, NH),7.43 (d, J = 4.0 Hz, 1H, ArH), 7.16 (t, J = 7.2 Hz, 1H, ArH), 7.03 (t, J = 7.6 Hz, 1H, ArH), 6.96 (d, J = 7.6 Hz, 1H, ArH), 6.79 (t, J = 7.6 Hz, 2H, ArH), 6.68 (t, J = 7.2 Hz, 1H, ArH), 6.56 (d, J = 7.6 Hz, 1H, ArH), 5.63 (d, J = 4.4 Hz, 1H, NH), 5.47 (d, J = 4.4 Hz, 1H, CH), 4.95 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 172.8, 160.4, 140.4, 136.7, 133.7, 132.6, 130.0, 129.2, 128.0, 127.1, 123.7, 123.6, 122.0,120.0,96.4, 66.7, 55.3

HRMS (ESI) m/z: calc. for [M+H+] C17H14ClN2O2: 313.0739; found: 313.0724.

10-(3-Nitrophenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4z

Yellow solid, Mp: 252–255 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568, 1478, 1454, 1438, 1403, 1365, 1062, 1032, 1011, 774, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.97 (s, 1H, NH), 8.09 (s, 1H, ArH), 8.00 (d, J = 8.0 Hz, 1H, ArH), 7.55–7.47 (m, 2H, ArH), 6.94 (d, J = 7.6 Hz, 1H, ArH), 6.79–6.70 (m, 2H, ArH), 6.62 (d, J = 8.0 Hz, 1H, ArH), 6.25 (d, J = 4.4 Hz, 1H, NH), 5.22 (d, 1H, J = 4 Hz, CH), 4.95 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.2, 159.9, 148.1, 146.4, 137.1, 133.9, 132.2, 130.0, 123.7, 123.4, 122.4, 122.2, 121.8, 120.3, 96.1, 66.7, 57.4

HRMS (ESI) m/z: calc. for [M+H+] C17H14N3O4: 324.0979; found: 324.0957.

4-(1-Oxo-3,4,9,10-tetrahydro-1H-2-oxa-4,9-diazabenzo[f]azulen-10-yl)-benzonitrile 4aa

Pale white solid, Mp: 279–281 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1508, 1478, 1454, 1438, 1390, 1365, 1334, 1062, 1032, 774, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.96 (s, 1H, NH),7.68 (d, J = 8.4 Hz, 2H, ArH), 7.32 (d, J = 8.0 Hz, 2H, ArH), 6.93 (d, J = 7.2 Hz, 1H, ArH), 6.79–6.70 (m, 2H, ArH), 6.59 (d, J = 7.6 Hz, 1H, ArH), 6.22 (d, J = 4.0 Hz, 1H, NH), 5.12 (d, J = 4 Hz, 1H, CH), 4.92 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.1, 159.7, 149.7, 137.2, 132.5, 132.0, 128.5, 123.6, 123.3, 121.6, 120.2, 119.2, 109.9, 96.0, 66.7, 57.6

HRMS (ESI) m/z: calc. for [M+H+] C18H14N3O2: 304.1081; found: 304.1071.

10-Phenyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4bb

White solid, Mp: 290–291 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568,1508, 1478, 11403, 1390, 1334, 1062, 1052, 1011, 774, cm−1.

1HNMR(400 MHz, DMSO-d6): 9.83 (s, 1H, NH), 7.20–7.09 (m, 5H, ArH), 6.89 (d, J = 7.8 Hz, 1H, ArH), 6.75–6.66 (m, 2H, ArH), 6.59 (d, J = 6.8 Hz, 1H, ArH), 6.07 (d, J = 4.4 Hz, 1H, NH), 5.05 (d, J = 4.4 Hz, 1H, CH), 4.90 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.3, 159.2, 144.2, 137.8, 131.9, 128.4, 127.5, 127.0, 123.3, 123.3, 121.1, 120.0, 97.2, 66.5, 57.8

HRMS (ESI) m/z: calc. for [M+H+] C17H15N2O2: 279.1129; found: 279.1127.

10-p-Tolyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4cc

White solid, Mp: 287–288 ºC

IR(KBr): 3351, 3246, 3202, 3149, 3102, 3083, 2965, 1717, 1645, 1639, 1568, 1509, 1487, 1387, 1197, 1061, 1033, 995, 851, 845 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.81 (s, 1H, NH), 7.00 (dd, J = 8.0, 14.4 Hz, 4H, ArH), 6.89 (d, J = 7.6 Hz, 1H, ArH), 6.74–6.66 (m, 2H, ArH), 6.58 (d, J = 7.2 Hz, 1H, ArH), 6.03 (d, J = 4.0 Hz, 1H, NH), 5.02 (d, J = 4.0 Hz, 1H, CH), 4.89 (s, 2H, CH2), 2.18 (s, 3H, CH3)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.2, 159.5, 143.6, 137.5, 132.1, 131.3, 129.8, 123.5, 123.4, 121.4, 120.2, 120.1, 96.7, 66.6, 57.3

HRMS (ESI) m/z: calc. for [M+H+] C18H17N2O2: 293.1285; found: 293.1279.

10-(2-Methoxyphenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4dd

White solid, Mp: 247–259 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568,1508, 1478, 1438,1403, 1390, 1062, 1052, 1032,1011, 774 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.88 (s, 1H, NH), 7.39 (d, J = 8.0 Hz, 2H, ArH), 7.09 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 1H, ArH), 6.77–6.69 (m, 2H, ArH), 6.59 (d, J = 7.6 Hz, 1H, ArH), 6.09 (d, J = 4.4 Hz, 1H, NH), 5.04 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.2, 159.5, 143.6, 137.5, 132.1, 131.3, 129.8, 123.5, 123.4, 121.4, 120.2, 120.1, 96.7, 66.6, 57.3

HRMS (ESI) m/z: calc. for [M+H+] C18H17N2O3: 309.1234; found: 309.1220.

10-(3,4,5-Trimethoxyphenyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4ee

Pale white solid, Mp: 259–260 ºC

IR(KBr): 3323, 3301, 3105, 2994, 2945, 2832, 1716, 1661, 1627, 1603, 1565, 1485, 1418, 1390, 1305, 1252, 1153, 1047, 783, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.83 (s, 1H, NH), 6.91–6.89 (m, 1H, ArH), 6.78–6.71 (m, 2H, ArH), 6.67–6.64 (m, 1H, ArH), 6.41 (s, 2H, ArH), 6.01 (d, J = 4.4 Hz, 1H, NH), 4.97 (d, J = 4.0 Hz, 1H, CH), 4.90 (d, J = 15.6 Hz, 1H, CH2), 4.86 (d, J = 15.6 Hz, 1H, CH2), 3.58 (s, 6H, CH3), 3.55 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C20H20NaN2O5: 391.1265; found: 391.1262.

10-(4-Dimethylaminophenyl)-3,4,9,10-tetrahydro-2-oxa-4,5,9-triazabenzo[f]azulen-1-one 4ff

Pale white solid, Mp: 273–276 ºC

IR(KBr):3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1568,1508, 1454, 1438, 1390, 1365, 1334, 1062, 1011, 774, cm−1.

1HNMR (400 MHz, DMSO-d6): 9.74 (s, 1H, NH), 6.94 (d, J = 8.4 Hz, 2H, ArH), 6.87 (d, J = 7.2 Hz, 1H, ArH), 6.73~6.66 (m, 2H, ArH), 6.60 (d, J = 7.2 Hz, 1H, ArH), 6.53 (d, J = 8.8 Hz, 2H, ArH), 5.94 (d, J = 4.4 Hz, 1H, NH), 4.96 (d, J = 4.0 Hz, 1H, CH), 4.87 (s, 2H,CH2), 2.79 (s, 6H, CH3)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.4, 158.9, 149.6, 138.2, 132.0, 128.2, 123.3, 123.2, 119.8, 112.4, 197.9, 66.4, 57.2

HRMS (ESI) m/z: calc. for [M+H+] C19H20N3O2: 322.1551; found: 322.1551.

10-Thien-2-yl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4gg

Pale yellow solid, Mp: 282–283 ºC

IR(KBr): 3352, 3247, 3150, 3104, 3083, 1716, 1670, 1617, 1595, 1508, 1478, 1454, 1403, 1390, 1365, 1062, 1052, 1032, 774 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.88 (1H, s, NH),7.39 (d, J = 8.0 Hz, 2H, ArH), 7.09 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 1H, ArH), 6.77–6.69 (m, 2H, ArH), 6.59 (d, J = 7.6 Hz, 1H, ArH), 6.09 (d, J = 4.4 Hz, 1H, NH), 5.04 (d, J = 4.0 Hz, 1H, CH), 4.90 (s, 2H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.0, 159.1, 148.6, 137.6, 132.1, 127.0, 125.1, 123.7, 123.5, 121.6, 120.1, 98.2, 66.5, 53.3

HRMS (ESI) m/z: calc. for [M+Na+] C15H12N2NaO2S: 307.0512; found: 307.0513.

10-Benzyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4hh

White solid, Mp: 229–231 ºC

IR(KBr): 3349, 3287, 3154, 3101, 1720, 1640, 1568, 1507, 1489, 1438, 1396, 1335, 1192, 1047, 766, 747, 702 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.66 (s, 1H, NH), 7.28 (t, J = 7.4 Hz, 2H, ArH), 7.20 (t, J = 7.2 Hz, 1H, ArH), 7.09 (d, J = 7.2 Hz, 2H, ArH), 6.90 (d, J = 7.2 Hz, 1H, ArH), 6.86–6.78 (m, 2H, ArH), 6.72 (d, J = 7.2 Hz, 1H, ArH), 5.43 (d, J = 4.0 Hz, 1H, NH), 4.76 (dd, J = 15.2, 4.0 Hz, 2H, CH2), 2.78–2.73 (m, 1H, CH2), 2.64–2.58 (m, 1H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 173.1, 158.5, 139.1,137.3, 131.8, 129.8, 128.7, 126.6, 123.7, 123.2, 121.0, 120.1, 98.6,66.5, 55.7, 44.3

HRMS (ESI) m/z: calc. for [M+H+] C18H17N2O2: 293.1285; found: 293.1287.

10-Isobutyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4ii

White solid, Mp: 208–210 ºC

IR(KBr): 3346, 2952, 2926, 1737, 1666, 1560, 1502, 1475, 1390, 1363, 1337, 1186, 1030, 1011, 969, 758, 647 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.64 (s, 1H, NH), 6.88 (d, J = 7.2 Hz, 2H, ArH), 6.83–6.76 (m, 2H, ArH), 5.69 (d, J = 4.4 Hz, 1H, NH), 4.77 (dd, J = 15.2, 18.8 Hz, 2H, CH2), 3.92–3.87 (m, 1H, CH), 1.72–1.65 (m, 1H, CH), 1.28–1.22 (m, 1H, CH2), 1.12–1.05 (m, 1H, CH2), 0.88 (d, J = 6.4 Hz, 3H, CH3), 0.83 (d, J = 6.4 Hz, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C15H18NaN2O2: 281.1261; found: 281.1274.

10-sec-Butyl-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4jj

White solid, Mp: 173–175 ºC

IR(KBr): 3355, 3293, 3109, 2963, 2929, 2874, 1731, 1651, 1567, 1490, 1437, 1393, 1359, 1335, 1186, 1151, 1122, 1043, 772 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.65 (s, 1H, NH), 6.90–6.84 (m, 2H, ArH), 6.82–6.78 (m, 1H, ArH), 6.75–6.72 (m, 1H, ArH), 5.83–5.80 (m, 1H, NH), 4.77 (s, 2H, CH2), 3.92–3.87 (m, 1H, CH), 3.60–3.54 (m, 1H, CH), 1.56–1.26 (m, 2H, CH2), 1.17–0.94 (m, 1H, CH), 0.81–0.72 (m, 6H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C15H18N2NaO2: 281.1261; found: 281.1276.

10-(1-Methylbutyl)-3,4,9,10-tetrahydro-2-oxa-4,9-diazabenzo[f]azulen-1-one 4kk

White solid, Mp: 173–174 ºC

IR(KBr): 3352, 2963, 2930, 2871, 1731, 1651, 1566, 1488, 1436, 1393, 1360, 1333, 1186, 1153, 1042, 1030, 986, 772, 756 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.66 (s, 1H, NH), 6.91–6.85 (m, 2H, ArH), 6.82–6.79 (m, 1H, ArH), 6.77–6.73 (m, 1H, ArH), 5.82 (d, 1H, J = 4.8 Hz, NH), 4.76 (m, 2H, CH2), 3.56–3.53 (m, 1H, CH),1.51–1.26 (m, 3H, CH and CH2), 1.13–0.96 (m, 2H, CH2), 0.80–0.71 (m, 6H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C16H20N2NaO2: 295.1417; found: 295.1410.

10-Cyclohexyl-3,4,9,10-tetrahydro-2-oxa-4,9-diaza-benzo[f]azulen-1-one 4ll

White solid, Mp: 256–257 ºC

IR(KBr): 3483, 3350, 3325, 3058, 2934, 2853, 1731, 1706, 1654, 1616, 1565, 1508, 1486, 1434, 1393, 1191, 1178, 1041, 801 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.64 (s, 1H, NH), 6.89–6.84 (m, 2H, ArH), 6.80 (t, J = 7.6 Hz, 1H, ArH), 6.76–6.72 (m, 1H, ArH), 5.83 (d, J = 4.8 Hz, 1H, NH), 4.78 (d, J = 15.2 Hz, 1H, CH2), 4.73 (d, J = 15.2 Hz, 1H, CH2), 3.49 (dd, J = 4.8, 15.2 Hz, 1H, CH), 1.85–1.84 (m, 1H, CH), 1.62–1.39 (m, 4H, CH2), 1.15–0.98 (m, 4H, CH2), 0.94–0.87 (m, 2H, CH2)

HRMS (ESI) m/z: calc. for [M+H+] C17H21N2O2: 285.1598; found: 285.1595.

10-Isopropyl-3,4,9,10-tetrahydro-2-oxa-4,9-diaza-benzo[f]azulen-1-one 4mm

White solid, Mp: 254–256 ºC

IR(KBr):3469, 3329, 3276, 3152, 3101, 2960, 1708, 1652, 1570, 1508, 1479, 1435, 1395, 1364, 1333, 1232, 1045, 998, 849 cm−1.

1HNMR (400 MHz, DMSO-d6): 9.66 (s, 1H, NH), 6.91–6.85 (m, 2H, ArH), 6.82–6.79 (m, 1H, ArH), 6.77–6.73 (m, 1H, ArH), 5.82 (d, J = 4.8 Hz, 1H, NH), 4.77 (s, 2H, CH2), 3.46 (dd, J = 4.8, 8.4 Hz, 1H, CH), 1.53–1.44 (m, 1H, CH), 0.86 (d, J = 6.4 Hz, 3H, CH3), 0.82 (d, J = 6.8 Hz, 3H, CH3)

HRMS (ESI) m/z: calc. for [M+Na+] C14H17N2O2: 245.1285; found: 245.1289.

General procedure for the synthesis of products 5a

In a 10-mL reaction vial, the benzene-1,2-diamine 1a (1 mmol), tetronic acid 3 (1 mmol), acetic acid (0.1 mmol) and water (2 mL) were mixed and then stiring for 10 min. Subsequently, the 2-formylbenzoic acids 2 (1 mmol) was added to the reaction mixture, and the reaction vial was capped and pre-stiring for 20 second. The mixture was subjected to microwave irradiation at 200W (initial power 100W, maximum power 200W) at 150 ºC, for 15 min. Upon completion, monitored by TLC, the reaction mixture was cooled to room temperature, filtered to give the crude product, which was further washed by 50% EtOH to give pure product 5a.

4bH-Benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5a

White solid, MP: 286–289 ºC

IR(KBr): 3277, 3220, 3147, 3108, 1734, 1704, 1688, 1730, 1595, 1543, 1506, 1397, 1348, 1194, 1045, 1023, 766 cm−1

1HNMR (400 MHz, DMSO-d6): 9.99(s, 1H, NH), 8.41 (d, 1H, J = 8.0 Hz, ArH), 7.78 (d, 1H, J = 7.6 Hz, ArH), 7.70–7.66 (m, 1H, ArH), 7.59–7.55 (m, 1H, ArH), 7.40–7.34 (m, 2H, ArH), 7.21–7.14 (m, 2H, ArH), 5.74 (s, 1H, CH), 4.83 (d, J = 15.2 Hz, 1H, CH2), 4.78 (d, J = 15.2 Hz, 1H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.8, 165.8,158.5, 143.9, 136.8, 131.6, 130.7, 130.6, 128.8, 128.2, 126.3, 123.3, 123.1, 119.4, 94.4, 66.6, 59.3.

HRMS (ESI) m/z: calc. for [M-H+] C18H11N2O3:303.0764; found: 303.0761.

1,2-Dimethoxy-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5b

White solid, Mp: 291–293 ºC

IR(KBr): 3251, 3201, 3141, 3092, 1752, 1677, 1655, 1596, 1557, 1497, 1376, 1337, 1272, 1062, 1040, 1011, 773 cm−1

1HNMR (400 MHz, DMSO-d6): 9.93 (s, 1H, NH), 8.06 (d, 1H, J = 8.4 Hz, ArH), 7.37–7.32 (m, 3H, ArH), 7.19–7.13 (m, 2H, ArH), 5.58 (s, 1H, CH), 4.87 (d, J = 15.2 Hz, CH2), 4.83 (d, J = 15.2 Hz, CH2), 4.87 (d, J = 15.2 Hz, 1H, CH2), 4.85 (d, J = 15.2 Hz, 1H, CH2), 3.85 (s, 3H, OCH3), 3.83 (s, 3H, OCH3)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.8, 163.9, 158.3, 152.4, 146.3, 137.1, 136.8, 130.9, 128.1, 126.4, 123.0, 121.6, 119.4, 116.8, 95.1, 66.5, 61.6, 58.0, 56.4.

HRMS (ESI) m/z: calc. for [M-H+] C20H15N2O5:363.0975; found: 363.0976.

10,11-Dimethyl-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5c

White solid, Mp: >300 ºC

IR(KBr): 3270, 3186, 3124, 3082, 1753, 1687, 1653, 1614, 1510, 1398, 1362, 1340, 1211, 1195, 1141, 1115, 1065, 1024, 760 cm−1

1HNMR (400 MHz, DMSO-d6): 9.94 (s, 1H, NH), 8.40 (d, 1H, J = 7.6 Hz, ArH), 7.75 (d, 1H, J = 7.2 Hz, ArH), 7.67 (t, 1H, J = 7.6 Hz, ArH), 7.58–7.54 (m, 1H, ArH), 7.14 (s, 1H, ArH), 6.95 (s, 1H, ArH), 5.67 (s, 1H, CH), 4.84 (d, J = 15.2 Hz, 1H, CH2), 4.74 (d, J = 15.2 Hz, 1H, CH2), 2.24 (s, 3H, CH3), 2.20 (s, 3H, CH3)

HRMS (ESI) m/z: calc. for [M-H+] C20H15N2O3:331.1077; found: 331.1075.

1,2-Dimethoxy-10,11-dimethyl-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5d

White solid, Mp: >300 ºC

IR(KBr): 3255, 3196, 3127, 3088, 3001, 1749, 1682, 1667, 1620, 1557, 1448, 1400, 1270, 1197, 1117, 1060, 1015, 958 cm−1

1HNMR (400 MHz, DMSO-d6): 9.77 (s, 1H, NH), 8.05 (d, J = 8.4 Hz, 1H, ArH), 7.34 (d, J = 8.4 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.93 (s, 1H, ArH), 5.51 (s, 1H, CH), 4.83 (d, J = 15.2 Hz, 1H, CH2), 4.72 (d, J = 15.2 Hz, 1H, CH2), 3.84 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 2.23 (s, 3H, CH3), 2.20 (s, 3H, CH3)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.9, 163.9, 158.4, 152.3, 146.2, 138.8, 136.4, 134.5, 131.1, 131.0, 123.8, 123.0, 121.6, 120.0, 116.6, 94.4, 66.4, 61.6, 58.0, 56, 4, 19.1, 18.5.

HRMS (ESI) m/z: calc. for [M-H+] C22H19N2O5:391.1288; found: 391.1284.

10,11-Dichloro-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5e

Pale white solid, Mp: >300 ºC

IR(KBr): 3330, 3281, 3134, 3102, 1747, 1715, 1662, 1626, 1597, 1557, 1487, 1408, 1259, 1179, 1135, 1014, 871 cm−1

1HNMR (400 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.41 (d, J = 7.6 Hz, 1H, ArH), 7.80 (d, J = 7.6 Hz, 1H, ArH), 7.73–7.69 (m, 2H, ArH), 7.61–7.57 (m, 1H, ArH), 7.39 (s, 1H, ArH), 5.76 (s, 1H, CH), 4.91 (d, J = 15.2 Hz, 1H, CH2), 4.79 (d, J = 15.2 Hz, 1H, CH2)

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.6, 165.9, 157.8, 143.7, 137.1, 132.1, 132.0, 130.2, 130.5, 129.0, 126.3, 124.0, 123.5, 120.4, 112.7, 95.6, 66.6, 59.0.

HRMS (ESI) m/z: calc. for [M-H+] C18H9Cl2N2O3:370.9984; found: 370.9982.

10,11-Dichloro-1,2-dimethoxy-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-5,14(7H,8H)-dione 5f

Pale white solid, Mp: 263–265 ºC

IR(KBr): 3249, 1747, 1681, 1672, 1592, 1537, 1489, 1474, 1393, 1342, 1194, 1134, 1111, 1055, 1027, 742 cm−1

1HNMR (400 MHz, DMSO-d6): 10.10 (s, 1H, NH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.68 (s, 1H, ArH), 7.39–7.37 (m, 2H, ArH), 5.59 (s, 1H, CH), 4.90 (d, J = 15.2 Hz, 1H, CH2), 4.76 (d, J = 15.2 Hz, 1H, CH2), 3.85 (s, 3H, OCH3), 3.84 (s, 3H, OCH3).

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.5, 163.9, 157.6, 152.4, 146.4, 137.3, 136.5, 132.3, 129.9, 126.1, 123.9, 122.5, 121.6, 120.3, 117.2, 96.2, 66.6, 61.6, 57.6, 56.4.

HRMS (ESI) m/z: calc. for [M-H+] C20H13Cl2N2O5:432.0196; found: 432.0199.

5,14-Dioxo-5,7,8,14-tetrahydro-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-10-carboxylic acid 5g

Pale white solid, MP: >300 ºC

IR(KBr): 3340, 3116, 1748, 1701, 1687, 1616, 1562, 1516, 1404, 1390, 1342, 1268, 1314, 1182, 1058, 1023, 771 cm−1

1HNMR (400 MHz, DMSO-d6): 13.21 (s, 1H, COOH), 10.17(s, 1H, NH), 8.43 (d, 1H, J = 7.6 Hz, ArH), 7.83 (d, 1H, J = 2.0 Hz, ArH), 7.80 (d, 1H, J = 7.6 Hz, ArH), 7.73–7.68 (m, 2H, ArH), 7.61–7.57 (m, 1H, ArH), 7.52 (d, 1H, J = 8.0 Hz, ArH), 5.80 (s, 1H, CH), 4.90 (d, J = 15.2 Hz, 1H, CH2), 4.81 (d, J = 15.2 Hz, 1H, CH2).

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.6, 166.4, 165.9, 158.3, 143.9, 136.7, 135.9, 131.9, 131.0, 130.4, 130.3, 130.0, 128.9, 126.4, 123.4, 120.5, 94.7, 66.5, 59.2.

HRMS (ESI) m/z: calc. for [M-H+] C19H11N2O5: 347.0662; found: 347.0659.

1,2-Dimethoxy-5,14-dioxo-5,7,8,14-tetrahydro-4bH-benzo[2,3]furo[3’,4’:5,6][1,4]diazepino[7,1-a]isoindole-10-carboxylic acid 5h

Pale white solid, Mp: 277–280 ºC

IR(KBr): 3313, 3138, 1750, 1689, 1672, 1558, 1499, 1400, 1275, 1061, 1047, 783, 774, 755 cm−1

1HNMR (400 MHz, DMSO-d6): 13.18 (s, 1H, COOH), 10.11 (s, 1H, NH), 8.08 (d, 1H, J = 8.4 Hz, ArH), 7.81 (s, 1H, ArH), 7.68–7.66(m, 1H, ArH), 7.51–7.49 (m, 1H, ArH), 7.38 (d, 1H, J = 8.4 Hz, ArH), 5.62 (s, 1H, CH), 4.89 (d, J = 15.2 Hz, 1H, CH2), 4.78 (d, J = 15.2 Hz, 1H, CH2), 3.85 (s, 3H, OCH3), 3.84 (s, 3H, OCH3).

13CNMR (100 MHz, DMSO-d6, 25 ºC) (δ, ppm): 171.7, 166.4, 163.9, 158.1, 152.4, 146.4, 136.9, 136.7, 131.1, 130.3, 130.1, 123.3, 122.8, 121.7, 120.5, 117.0, 95.2, 66.5, 61.6, 57.8, 56.4.

HRMS (ESI) m/z: calc. for [M-H+] C21H15N2O7: 407.0874; found: 407.0880.

Crystal data for 4g: C26H32N4O8, pale white, crystal dimension 0.40 × 0.35 × 0.14 mm, Monoclinic, space group P2(1)/c, a = 11.9237(11) Å, b = 14.1491(13) Å, c = 16.7626(14) Å, α = γ = 90 ºC, β = 99.5980(10) ºC, V = 2788.4(4) Å3, Mr = 528.56, Z = 4, Dc = 1.259 Mg/m3, λ = 0.71073 Å, μ(Mo Kα) = 0.094 mm−1, F(000) = 1120, R = 0.0552, wR2 = 0.1182, S = 1. 036, largest diff. Peak and hole: 0.508 and −0.324 e/Å3. CCDC-823409 contains the supplementary crystallographic data for this paper

Crystal data for 4u: C17H13BrN2O2, pale white, crystal dimension 0.35 × 0.20 × 0.11 mm, Monoclinic, space group P2(1)/c, a = 14.6324(15) Å, b = 12.0632(12) Å, c = 8.5627(9) Å, α = γ = 90 ºC, β = 94.7470(10) ºC, V = 1506.2(3) Å3, Mr = 357.20, Z = 4, Dc = 1.575 Mg/m3, λ = 0.71073 Å, μ(Mo Kα) = 2.737 mm−1, F(000) = 720, R = 0.0320, wR2 = 0.0630, S = 1. 011, largest diff. Peak and hole: 0.279 and −0.343 e/Å3. CCDC-823410 contains the supplementary crystallographic data for this paper

Supplementary Material

01

Acknowledgments

We are grateful for financial support from are grateful to financial support from the National Science Foundation of China (Nos. 20928001, 21072163 and 21002083), Science Foundation in Interdisciplinary Major Research Project of Xuzhou Normal University (No. 09XKXK01), Doctoral Research Foundation of Xuzhou Normal Univ. (XZNU, No. 10XLR20), Robert A. Welch Foundation (D-1361), NIH (R03DA026960) and PAPD of Jiangsu Higher Education Institutions for their generous support.

Footnotes

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References and notes

  • 1.(a) Kumar R, Chaudhary P, Nimesh S, Verma AK, Chandra R. Green Chem. 2006;8:519–521. [Google Scholar]; (b) Fujioka H, Murai K, Kubo O, Ohba Y, Kita Y. Org lett. 2007;9:1687–1690. doi: 10.1021/ol070402c. [DOI] [PubMed] [Google Scholar]; (c) Hart BR, Rush DJ, Shea KJ. J Am Chem Soc. 2000;122:460–465. [Google Scholar]; (d) Shaabani A, Maleki A, Mofakham H. J Comb Chem. 2008;10:595–598. doi: 10.1021/cc8000635. [DOI] [PubMed] [Google Scholar]; (e) Murai K, Nakatani R, Kita Y, Fujioka H. Tetrahedron. 2008;64:11034–11040. [Google Scholar]; (f) Ookura R, Kito K, Ooi T, Namikoshi M, Kusumi T. J Org Chem. 2008;73:4245–4247. doi: 10.1021/jo800348d. [DOI] [PubMed] [Google Scholar]; (g) Tonkikh NN, Strakovs A, Rizhanova KV, Petrova MV. Chemistry of Heterocyclic Compounds. 2004;40:949–955. [Google Scholar]; (h) Michelini S, Cassano GB, Frare F, Perugi G. Pharmacopsychiatry. 1996;29:127–134. doi: 10.1055/s-2007-979558. [DOI] [PubMed] [Google Scholar]; (i) Harry MG, Lawrence LM, Charles AC, Frederick WD, Daniel BE, Hansjoerg K, Linda LS, Manfred W. J Med Chem. 1982;25:340346. [Google Scholar]
  • 2.(a) Schutz H. Benzadiazepines. Vol. 2. Springer; Heidelberg: 1982. p. 240. [Google Scholar]; (b) Smalley RK. In: Comprehensive Organic Chemistry. Barton D, Ollis WD, editors. Vol. 4. Pergamon; Oxford: 1979. p. 600. [Google Scholar]; (c) Landquist JK. In: Comprehensive Heterocyclic Chemistry. Katritzk AR, Rees CW, editors. Vol. 1. Pergamon; Oxford: 1984. p. 166.p. 170. [Google Scholar]
  • 3.(a) Neelakantan S, Seshadri TR. Curr Sci. 1959;28:476–480. [Google Scholar]; (b) Haynes LJ, Plimmer JR. Quarterly Rev. 1960;14:292–315. [Google Scholar]; (c) Brodersen R, Kjaer A. Acta Pharmacol Toxicol. 1946;2:109–120. doi: 10.1111/j.1600-0773.1946.tb02603.x. [DOI] [PubMed] [Google Scholar]
  • 4.(a) Roggo BE, Petersen F, Delmendo R, Jenny HB, Peter HH, Roesel J. J Antibiot. 1994;47:136–142. doi: 10.7164/antibiotics.47.136. [DOI] [PubMed] [Google Scholar]; (b) Chrusciel RA, Maggiora LL, Thaisrivongs S, Tustin JM, Tommasi RA, Aristoff PA, Skulnick HI, Howe WJ, Bundy GL. 9507901. WO. 1995; Chem Abstr. 1995;123:55683p. [Google Scholar]
  • 5.Foden FR, McCormick J, O’Mant DM. J Med Chem. 1975;18:199–203. doi: 10.1021/jm00236a020. [DOI] [PubMed] [Google Scholar]
  • 6.(a) Vishwakarma RA, Kapil RS, Popli SP. Indian J Chem Sect B. 1987;26:486–487. [Google Scholar]; (b) Luk K, Readshaw SA. J Chem Soc, Perkin Trans. 1991;1:1641–1644. [Google Scholar]
  • 7.(a) Ley SV, Trudell ML, Wadsworth DJ. Tetrahedron. 1991;47:8285. [Google Scholar]; (b) Vanwagenen BE, Cardellina JH. Tetrahedron. 1986;42:1117–1122. [Google Scholar]; (c) Cappon RJ, Macleod JK. Aust J Chem. 1987;40:1327–1330. [Google Scholar]; (d) Matsumoto M, Kawamura Y, Terui Y, Nakai H, Yoshida T, Shoji J. J Antibiot. 1990;43:739–747. doi: 10.7164/antibiotics.43.739. [DOI] [PubMed] [Google Scholar]
  • 8.Ibi A, Yaniguchi E, Maekawa K. Agric Biol Chem. 1979;43:1641–1646. [Google Scholar]
  • 9.(a) Dal Pozzo A, Dansi A, Neneghini E. Bull Chim Farm. 1974;113:280–285. [PubMed] [Google Scholar]; (b) Dal Pozzo A, Dansi A, Neneghini E. Bull Chim Farm. 1974;113:324–327. [PubMed] [Google Scholar]; (c) Foden FR, McCormick J, O’Mant DM. 1,358,382. British Patent. 1974; Chem Abstr. 1974;81:120438t. [Google Scholar]
  • 10.(a) Rehse K, Wagenknecht J, Rietbrock N. Arch Pharm, (Weinheim, Ger) 1978;311:986–992. doi: 10.1002/ardp.19783111203. [DOI] [PubMed] [Google Scholar]; (b) Rehse K, Emisch U. Arch Pharm, (Weinheim, Ger) 1983;316:115–120. [PubMed] [Google Scholar]; (c) Rehse K, Rothe M, Kuhn M. Arch Pharm, (Weinheim, Ger) 1982;315:52–56. doi: 10.1002/ardp.19823150112. [DOI] [PubMed] [Google Scholar]; (d) Witiak D, Kokrady SS, Patel ST, Akbar HD, Feller R, Newmann HAI. J Med Chem. 1982;25:90–93. doi: 10.1021/jm00343a019. [DOI] [PubMed] [Google Scholar]
  • 11.Zhang C-L, Chatterjee SS, Stein U, Heinemann U. Naunyn-Schmiedebergs Arch Pharmacol. 1992;345:85–92. doi: 10.1007/BF00175474. [DOI] [PubMed] [Google Scholar]
  • 12.(a) Amari M, Fodili M, Kolli BN. J Heterocyclic Chem. 2002;39:811–816. [Google Scholar]; (b) Savina SA, Lyubchanskaya VM, Alekseeva LM, Shashkov AS, Granik VG. Russ Chem Bull. 2007;56:2298–2304. [Google Scholar]; (c) Matsuo K, Tanaka K. Chem Pharm Bull. 1984;32:3724–3729. doi: 10.1248/cpb.32.4197. [DOI] [PubMed] [Google Scholar]
  • 13.(a) Jiang B, Tu SJ, Parminder K, Walter W, Li G. J Am Chem Soc. 2009;131:11660–11661. doi: 10.1021/ja904011s. [DOI] [PubMed] [Google Scholar]; (b) Jiang B, Li C, Shi F, Tu SJ, Kaur P, Wever W, Li G. J Org Chem. 2010;75:2962–2965. doi: 10.1021/jo1002278. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Jiang B, Wang X, Shi F, Tu SJ, Li G. J Org Chem. 2009;74:9486–9489. doi: 10.1021/jo902204s. [DOI] [PubMed] [Google Scholar]; (d) Ma N, Jiang B, Zhang G, Tu SJ, Wever W, Li G. Green Chem. 2010;12:1357–1361. [Google Scholar]
  • 14.(a) Tu SJ, Cao XD, Hao WJ, Zhang XH, Yan S, Wu SS, Han ZG, Shi F. Org Biomol Chem. 2009;7:557–563. doi: 10.1039/b815879g. [DOI] [PubMed] [Google Scholar]; (b) Jiang B, Hao WJ, Zhang JP, Tu SJ, Shi F. Org Biomol Chem. 2009;7:1171–1175. doi: 10.1039/b817930a. [DOI] [PubMed] [Google Scholar]; (c) Hao WJ, Jiang B, Tu SJ, Cao XD, Wu SS, Yan S, Zhang XH, Han ZG, Shi F. Org Biomol Chem. 2009;7:1410–1414. doi: 10.1039/b819763f. [DOI] [PubMed] [Google Scholar]; (d) Jiang B, Hao WJ, Zhang JP, Tu SJ, Shi F. Org Biomol Chem. 2009;7:2195–2201. doi: 10.1039/b822645h. [DOI] [PubMed] [Google Scholar]; (e) Jiang B, Shi F, Tu SJ. Curr Org Chem. 2010;14:357–378. [Google Scholar]
  • 15.(a) Tu SJ, Zhang XH, Han ZG, Cao XD, Wu SS, Yan S, Hao WJ, Ma N. J Comb Chem. 2009;11:428–432. doi: 10.1021/cc800212v. [DOI] [PubMed] [Google Scholar]; (b) Jiang B, Cao LJ, Tu SJ, Zheng WR, Yu HZ. J Comb Chem. 2009;11:612–616. doi: 10.1021/cc900038g. [DOI] [PubMed] [Google Scholar]; (c) Jiang B, Hao WJ, Wang X, Shi F, Tu SJ. J Comb Chem. 2009;11:846–850. doi: 10.1021/cc900052b. [DOI] [PubMed] [Google Scholar]
  • 16.(a) Cleator E, Baxter C, O’Hagan M, O’Riordan T, Sheen F, Stewart G. Tetrahedron Lett. 2010;51:1079–1082. [Google Scholar]; (b) Enders D, Wang C, Mukanova M, Greb A. Chem Commun. 2010;46:2447–2449. doi: 10.1039/c002839h. [DOI] [PubMed] [Google Scholar]; (c) Adib M, Ansari S, Fatemi S, Bijanzadeh H, Zhu L. Tetrahedron. 2010;66:2723–2727. [Google Scholar]; (d) Kumar A, Sharma S, Maurya R. Tetrahedron Lett. 2009;50:5937–5940. [Google Scholar]
  • 17.(a) Ju YH, Rajender SV. J Org Chem. 2006;71:135–141. doi: 10.1021/jo051878h. [DOI] [PubMed] [Google Scholar]; (b) Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light. CEM Publishing; Mathews, NC: 2002. pp. 29–36. [Google Scholar]; (c) Gellis A, Boufatah N, Vanelle P. Green Chem. 2006;8:483–487. [Google Scholar]; (d) Ju Y, Varma RS. Org Lett. 2005;7:2409–2411. doi: 10.1021/ol050683t. [DOI] [PubMed] [Google Scholar]; (e) Arvela RK, Leadbeater NE. Org Lett. 2005;7:2101–2104. doi: 10.1021/ol0503384. [DOI] [PubMed] [Google Scholar]; (f) Skouta R, Varma RS, Li CJ. Green Chem. 2005;7:571–575. [Google Scholar]; (g) Wu X, Larhed M. Org Lett. 2005;7:3327–3329. doi: 10.1021/ol0512031. [DOI] [PubMed] [Google Scholar]; (h) Ju YH, Varma RS. J Org Chem. 2006;71:135–141. doi: 10.1021/jo051878h. [DOI] [PubMed] [Google Scholar]
  • 18.(a) Li CJ. Chem Rev. 2005;105:3095–3165. doi: 10.1021/cr030009u. [DOI] [PubMed] [Google Scholar]; (b) Herreroas CI, Yao XQ, Li ZP, Li CJ. Chem Rev. 2007;107:2546–2562. doi: 10.1021/cr050980b. [DOI] [PubMed] [Google Scholar]; (c) Li CJ. Acc Chem Res. 2010;43:581–590. doi: 10.1021/ar9002587. [DOI] [PubMed] [Google Scholar]; (d) Macleod DP, Li ZP, Li CJ. Tetrahedron. 2010;66:1045–1050. [Google Scholar]; (e) Dallinger D, Kappe CO. Chem Rev. 2007;107:2563–2591. doi: 10.1021/cr0509410. [DOI] [PubMed] [Google Scholar]
  • 19.(a) Kaur P, Pindi S, Wever W, Rajale T, Li G. Chem Commun. 2010;46:4330–4332. doi: 10.1039/c0cc00287a. [DOI] [PubMed] [Google Scholar]; (b) Kaur P, Pindi S, Wever W, Rajale T, Li G. J Org Chem. 2010;75:5144–5150. doi: 10.1021/jo100865q. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Kattuboina A, Li G. Tetrahedron Lett. 2008;49:1573–1577. [Google Scholar]; (d) Kattuboina A, Kaur P, Ai T, Li G. Chem Biol Drug Des. 2008;71:216–223. doi: 10.1111/j.1747-0285.2008.00633.x. [DOI] [PubMed] [Google Scholar]; (d) Kattuboina A, Kaur P, Nguyen T, Li G. Tetrahedron Lett. 2008;49:3722–3721. [Google Scholar]
  • 20.(a) Kaur P, Nguyen T, Li G. Eur J Org Chem. 2009:912–916. [Google Scholar]; (b) Han J, Ai T, Li G. Synthesis. 2008;16:2519–2526. [Google Scholar]; (c) Han J, Chen ZX, Ai T, Li G. Chem Biol Drug Des. 2009;73:203–208. doi: 10.1111/j.1747-0285.2008.00771.x. [DOI] [PubMed] [Google Scholar]; (d) Chen ZX, Ai T, Kaur P, Li G. Tetrahedron Lett. 2009;50:1079–1081. [Google Scholar]; (e) Ai T, Li G. Bioorg Med Chem Lett. 2009;19:3967–3969. doi: 10.1016/j.bmcl.2009.03.001. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

01

RESOURCES