Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Jan;57(1):272–277. doi: 10.1128/iai.57.1.272-277.1989

Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines.

N Yokosawa 1, Y Kurokawa 1, K Tsuzuki 1, B Syuto 1, N Fujii 1, K Kimura 1, K Oguma 1
PMCID: PMC313087  PMID: 2535834

Abstract

Binding of type C neurotoxin (C1 toxin) from Clostridium botulinum (strain Stockholm) to neuroblastoma cell lines was studied by using biotinylated anti-toxin antibody and avidin-biotinylated peroxidase complex. The neurotoxin bound with high efficiency to mouse neuroblastoma (NS-20Y and NIE-115) cells and to hybridomas of rat glioblastoma and mouse neuroblastoma (NG108-C15) cells. The toxin bound little to human neuroblastoma, rat astrocytoma, and nonneural cell lines. Binding of the neurotoxin to NG108-C15 cells was inhibited by gangliosides (GT1b and GM1) and by monoclonal antibodies (CA-12 and C-9), although inhibition was not complete. Sequential preincubation of C1 toxin with GT1b and CA-12 caused complete inhibition. A Scatchard plot of binding of 125I-labeled C1 toxin to NG108-C15 cells showed a hyperbolic curve. Monoclonal antibody CA-12 but not C-9 neutralized the lethal activity of the toxin toward mice. Only C-9 clearly inhibited toxin binding to GT1b. These results suggest that NG108-C15 cells have at least two kinds of receptors for C1 toxin. From the results of binding tests with neuraminidase-, pronase-, and trypsin-treated NG108-C15 cells, the chemical nature of the high-affinity site was presumed to be a glycoprotein containing sialic acid. GT1b may have an important role in low-affinity sites.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agui T., Syuto B., Oguma K., Iida H., Kubo S. Binding of Clostridium botulinum type C neurotoxin to rat brain synaptosomes. J Biochem. 1983 Aug;94(2):521–527. doi: 10.1093/oxfordjournals.jbchem.a134383. [DOI] [PubMed] [Google Scholar]
  2. Agui T., Syuto B., Oguma K., Iida H., Kubo S. The structural relation between the antigenic determinants to monoclonal antibodies and binding sites to rat brain synaptosomes and GT1b ganglioside in Clostridium botulinum type C neurotoxin. J Biochem. 1985 Jan;97(1):213–218. doi: 10.1093/oxfordjournals.jbchem.a135047. [DOI] [PubMed] [Google Scholar]
  3. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolly J. O., Black J., Williams R. S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984 Feb 2;307(5950):457–460. doi: 10.1038/307457a0. [DOI] [PubMed] [Google Scholar]
  5. Evans D. M., Williams R. S., Shone C. C., Hambleton P., Melling J., Dolly J. O. Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur J Biochem. 1986 Jan 15;154(2):409–416. doi: 10.1111/j.1432-1033.1986.tb09413.x. [DOI] [PubMed] [Google Scholar]
  6. Hamprecht B. Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture. Int Rev Cytol. 1977;49:99–170. doi: 10.1016/s0074-7696(08)61948-8. [DOI] [PubMed] [Google Scholar]
  7. Hirokawa N., Kitamura M. Localization of radioactive I25I-labelled botulinus toxin at the neuromuscular junction of mouse diaphragm. Naunyn Schmiedebergs Arch Pharmacol. 1975;287(1):107–110. doi: 10.1007/BF00632642. [DOI] [PubMed] [Google Scholar]
  8. Kitamura M. Binding of botulinum neurotoxin to the synaptosome fraction of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1976 Nov;295(2):171–175. doi: 10.1007/BF00499451. [DOI] [PubMed] [Google Scholar]
  9. Kitamura M., Iwamori M., Nagai Y. Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta. 1980 Mar 20;628(3):328–335. doi: 10.1016/0304-4165(80)90382-7. [DOI] [PubMed] [Google Scholar]
  10. Knight D. E., Tonge D. A., Baker P. F. Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature. 1985 Oct 24;317(6039):719–721. doi: 10.1038/317719a0. [DOI] [PubMed] [Google Scholar]
  11. Kozaki S. Interaction of botulinum type A, B and E derivative toxins with synaptosomes of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1979 Jul;308(1):67–70. doi: 10.1007/BF00499721. [DOI] [PubMed] [Google Scholar]
  12. Kozaki S., Sakaguchi G. Binding to mouse brain synaptosomes of Clostridium botulinum type E derivative toxin before and after tryptic activation. Toxicon. 1982;20(5):841–846. doi: 10.1016/0041-0101(82)90071-x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Murayama S., Syuto B., Oguma K., Iida H., Kubo S. Comparison of Clostridium botulinum toxins type D and C1 in molecular property, antigenicity and binding ability to rat-brain synaptosomes. Eur J Biochem. 1984 Aug 1;142(3):487–492. doi: 10.1111/j.1432-1033.1984.tb08312.x. [DOI] [PubMed] [Google Scholar]
  15. Oguma K., Agui T., Syuto B., Kimura K., Iida H., Kubo S. Four different monoclonal antibodies against type C1 toxin of Clostridium botulinum. Infect Immun. 1982 Oct;38(1):14–20. doi: 10.1128/iai.38.1.14-20.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oguma K., Murayama S., Syuto B., Iida H., Kubo S. Analysis of antigenicity of Clostridium botulinum type C1 and D toxins by polyclonal and monoclonal antibodies. Infect Immun. 1984 Feb;43(2):584–588. doi: 10.1128/iai.43.2.584-588.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simpson L. L., Rapport M. M. Ganglioside inactivation of botulinum toxin. J Neurochem. 1971 Jul;18(7):1341–1343. doi: 10.1111/j.1471-4159.1971.tb00235.x. [DOI] [PubMed] [Google Scholar]
  18. Syuto B., Kubo S. Isolation and molecular size of Clostridium botulinum type C toxin. Appl Environ Microbiol. 1977 Feb;33(2):400–405. doi: 10.1128/aem.33.2.400-405.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Syuto B., Kubo S. Purification and crystallization of Clostridium botulinum type C toxin. Jpn J Vet Res. 1972 Jun;20(1):19–30. [PubMed] [Google Scholar]
  20. Syuto B., Kubo S. Separation and characterization of heavy and light chains from Clostridium botulinum type C toxin and their reconstitution. J Biol Chem. 1981 Apr 25;256(8):3712–3717. [PubMed] [Google Scholar]
  21. Williams R. S., Tse C. K., Dolly J. O., Hambleton P., Melling J. Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem. 1983 Mar 15;131(2):437–445. doi: 10.1111/j.1432-1033.1983.tb07282.x. [DOI] [PubMed] [Google Scholar]
  22. Wonnacott S. Inhibition by botulinum toxin of acetylcholine release from synaptosomes: latency of action and the role of gangliosides. J Neurochem. 1980 Jun;34(6):1567–1573. doi: 10.1111/j.1471-4159.1980.tb11245.x. [DOI] [PubMed] [Google Scholar]
  23. ZACKS S. I., METZGER J., SMITH C. W., BLUMBERG J. M. Localization of ferritin-labelled botulinus toxin in the neuromuscular junction of the mouse. J Neuropathol Exp Neurol. 1962 Oct;21:610–633. doi: 10.1097/00005072-196210000-00008. [DOI] [PubMed] [Google Scholar]
  24. Zacks S. I., Rhoades M. V., Sheff M. F. The localization of botulinum A toxin in the mouse. Exp Mol Pathol. 1968 Aug;9(1):77–83. doi: 10.1016/0014-4800(68)90052-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES