Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Feb;57(2):359–366. doi: 10.1128/iai.57.2.359-366.1989

Impaired antipneumococcal activity of bronchoalveolar lining material of neonatal rats.

J D Coonrod 1, M C Jarrells 1
PMCID: PMC313105  PMID: 2912894

Abstract

Pulmonary clearance of inhaled pneumococci is markedly impaired in neonatal rats compared with that in adult rats. To determine whether this impairment is due to a deficiency of extracellular bactericidal factors, the antipneumococcal activity of free fatty acids (FFA) in lung surfactant and the levels of lysozyme and transferrin in lavage fluids were quantified. Surfactant from adult rats averaged 68 U of antipneumococcal activity per g (dry weight) of lung, compared with less than 0.25 U for rats less than 1 week old (P less than 0.001). The kinds of FFA in surfactant of neonatal and adult rats were essentially identical, and the antipneumococcal activity of highly purified FFA from surfactant of neonatal and adult rats was also the same. However, the quantity of FFA in surfactant varied significantly with age, and rats less than 3 weeks old had much lower levels of surfactant FFA than did adults (P less than 0.001). In addition, lavage fluids from neonatal rats inhibited the antipneumococcal activity of surfactant FFA more than lavage fluids from adults did (P less than 0.02). This inhibitory activity did not appear to be due to protein binding. Lavage fluids from neonates showed an age-related deficiency of lysozyme (P less than 0.001), but lysozyme appeared to play no role in pneumococcal killing by the surfactant fraction of lavage fluids in vitro. Transferrin levels in lavage fluids were similar for neonates and adults. It was concluded that lung surfactant from neonatal rats was deficient in antipneumococcal activity, due mostly to low levels of FFA and to a lesser degree to increased levels of inhibitor(s) in lavage fluids.

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantin A. M., North S. L., Hubbard R. C., Crystal R. G. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol (1985) 1987 Jul;63(1):152–157. doi: 10.1152/jappl.1987.63.1.152. [DOI] [PubMed] [Google Scholar]
  2. Chait A., Iverius P. H., Brunzell J. D. Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest. 1982 Feb;69(2):490–493. doi: 10.1172/JCI110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christensen R. D., Shigeoka A. O., Hill H. R., Rothstein G. Circulating and storage neutrophil changes in experimental type II group B streptococcal sepsis. Pediatr Res. 1980 Jun;14(6):806–808. doi: 10.1203/00006450-198006000-00006. [DOI] [PubMed] [Google Scholar]
  4. Coonrod J. D., Jarrells M. C., Bridges R. B. Impaired pulmonary clearance of pneumococci in neonatal rats. Pediatr Res. 1987 Dec;22(6):736–742. doi: 10.1203/00006450-198712000-00025. [DOI] [PubMed] [Google Scholar]
  5. Coonrod J. D., Lester R. L., Hsu L. C. Characterization of the extracellular bactericidal factors of rat alveolar lining material. J Clin Invest. 1984 Oct;74(4):1269–1279. doi: 10.1172/JCI111537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coonrod J. D., Marple S., Holmes G. P., Rehm S. R. Extracellular killing of inhaled pneumococci in rats. J Lab Clin Med. 1987 Dec;110(6):753–766. [PubMed] [Google Scholar]
  7. Coonrod J. D. The role of extracellular bactericidal factors in pulmonary host defense. Semin Respir Infect. 1986 Jun;1(2):118–129. [PubMed] [Google Scholar]
  8. Coonrod J. D., Yoneda K. Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats. J Clin Invest. 1983 Jan;71(1):129–141. doi: 10.1172/JCI110741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank L., Bucher J. R., Roberts R. J. Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol Respir Environ Exerc Physiol. 1978 Nov;45(5):699–704. doi: 10.1152/jappl.1978.45.5.699. [DOI] [PubMed] [Google Scholar]
  10. Frank L., Sosenko I. R. Prenatal development of lung antioxidant enzymes in four species. J Pediatr. 1987 Jan;110(1):106–110. doi: 10.1016/s0022-3476(87)80300-1. [DOI] [PubMed] [Google Scholar]
  11. Fryer A. A., Hume R., Strange R. C. The development of glutathione S-transferase and glutathione peroxidase activities in human lung. Biochim Biophys Acta. 1986 Oct 1;883(3):448–453. doi: 10.1016/0304-4165(86)90283-7. [DOI] [PubMed] [Google Scholar]
  12. Khoo J. C., Mahoney E. M., Witztum J. L. Secretion of lipoprotein lipase by macrophages in culture. J Biol Chem. 1981 Jul 25;256(14):7105–7108. [PubMed] [Google Scholar]
  13. Knapp H. R., Melly M. A. Bactericidal effects of polyunsaturated fatty acids. J Infect Dis. 1986 Jul;154(1):84–94. doi: 10.1093/infdis/154.1.84. [DOI] [PubMed] [Google Scholar]
  14. Kreuzfelder E., Joka T., Keinecke H. O., Obertacke U., Schmit-Neuerburg K. P., Nakhosteen J. A., Paar D., Scheiermann N. Adult respiratory distress syndrome as a specific manifestation of a general permeability defect in trauma patients. Am Rev Respir Dis. 1988 Jan;137(1):95–99. doi: 10.1164/ajrccm/137.1.95. [DOI] [PubMed] [Google Scholar]
  15. LaForce F. M., Boose D. S. Release of lactoferrin by polymorphonuclear leukocytes after aerosol challenge with Escherichia coli. Infect Immun. 1987 Sep;55(9):2293–2295. doi: 10.1128/iai.55.9.2293-2295.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin T. R., Rubens C. E., Wilson C. B. Lung antibacterial defense mechanisms in infant and adult rats: implications for the pathogenesis of group B streptococcal infections in the neonatal lung. J Infect Dis. 1988 Jan;157(1):91–100. doi: 10.1093/infdis/157.1.91. [DOI] [PubMed] [Google Scholar]
  17. McGowan S. E., Henley S. A. Iron and ferritin contents and distribution in human alveolar macrophages. J Lab Clin Med. 1988 Jun;111(6):611–617. [PubMed] [Google Scholar]
  18. Olivecrona T., Bengtsson-Olivecrona G. Lipoprotein lipase--the molecule and its interactions. Agents Actions Suppl. 1984;16:55–67. doi: 10.1007/978-3-0348-7235-5_7. [DOI] [PubMed] [Google Scholar]
  19. Osserman E. F., Lawlor D. P. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J Exp Med. 1966 Nov 1;124(5):921–952. doi: 10.1084/jem.124.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Repine J. E., Fox R. B., Berger E. M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem. 1981 Jul 25;256(14):7094–7096. [PubMed] [Google Scholar]
  21. Santa Maria C., Machado A. Effects of development and ageing on pulmonary NADPH-cytochrome c reductase, glutathione peroxidase, glutathione reductase and thioredoxin reductase activities in male and female rats. Mech Ageing Dev. 1986;37(3):183–195. doi: 10.1016/0047-6374(86)90036-9. [DOI] [PubMed] [Google Scholar]
  22. Sherman M., Goldstein E., Lippert W., Wennberg R. Group B streptococcal lung infection in neonatal rabbits. Pediatr Res. 1982 Mar;16(3):209–212. doi: 10.1203/00006450-198203000-00009. [DOI] [PubMed] [Google Scholar]
  23. Sherman M., Goldstein E., Lippert W., Wennberg R. Neonatal lung defense mechanisms: a study of the alveolar macrophage system in neonatal rabbits. Am Rev Respir Dis. 1977 Sep;116(3):433–440. doi: 10.1164/arrd.1977.116.3.433. [DOI] [PubMed] [Google Scholar]
  24. Toews G. B. Determinants of bacterial clearance from the lower respiratory tract. Semin Respir Infect. 1986 Jun;1(2):68–78. [PubMed] [Google Scholar]
  25. Vial W. C., Toews G. B., Pierce A. K. Early pulmonary granulocyte recruitment in response to Streptococcus pneumoniae. Am Rev Respir Dis. 1984 Jan;129(1):87–91. doi: 10.1164/arrd.1984.129.1.87. [DOI] [PubMed] [Google Scholar]
  26. Warshaw J. B., Wilson C. W., 3rd, Saito K., Prough R. A. The responses of glutathione and antioxidant enzymes to hyperoxia in developing lung. Pediatr Res. 1985 Aug;19(8):819–823. doi: 10.1203/00006450-198508000-00008. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES