Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Apr;57(4):1066–1071. doi: 10.1128/iai.57.4.1066-1071.1989

Modulation of invasiveness and catalytic activity of Bordetella pertussis adenylate cyclase by polycations.

A Raptis 1, L G Knipling 1, F Gentile 1, J Wolff 1
PMCID: PMC313230  PMID: 2538395

Abstract

Penetration of Bordetella pertussis adenylate cyclase into CHO cells was monotonically inhibited by polylysines, with a minimum degree of polymerization of greater than 6 and less than or equal to 9 to 10. Above this level, inhibitory potency per lysyl residue was independent of polymer length; 50% inhibition was obtained with 60 microM lysine monomer. Other polycations were also potent inhibitors. The adenylate cyclase itself showed a biphasic (stimulation-inhibition) response, with a similar independence of polymer length above a certain minimum. Half-maximal inhibitory concentrations for cyclic AMP accumulation corresponded to half-maximal stimulatory concentrations of poly-L-lysine for the cyclase. The inhibitory effect of polylysines on cyclic AMP accumulation was not reversed by washing or enzymatic removal of neuraminic acid. We conclude that charge-charge interactions play an important role in the penetration of B. pertussis adenylate cyclase into host cells.

Full text

PDF
1066

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. J., Jr, Dagan A., Gutheil J., Kaplan N. O. Antineoplastic activity of poly(L-lysine) with some ascites tumor cells. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3246–3250. doi: 10.1073/pnas.76.7.3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aseeva L. E., Shevchenko L. A., Shimaniuk N. Ia, Rublev B. D., Mishan'kin B. N. Otsenka moduliruiushchego deistviia adenilattsiklazy chumnogo mikroba na peritoneal'nye leikotsity morskoi svinki s pomoshch'iu khemiliuminestsentsii. Zh Mikrobiol Epidemiol Immunobiol. 1987 Jul;(7):59–63. [PubMed] [Google Scholar]
  3. Brooker G., Harper J. F., Terasaki W. L., Moylan R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res. 1979;10:1–33. [PubMed] [Google Scholar]
  4. Confer D. L., Eaton J. W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982 Sep 3;217(4563):948–950. doi: 10.1126/science.6287574. [DOI] [PubMed] [Google Scholar]
  5. Cronin M. J., Evans W. S., Rogol A. D., Weiss A. A., Thorner M. O., Orth D. N., Nicholson W. E., Yasumoto T., Hewlett E. L. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture. Am J Physiol. 1986 Aug;251(2 Pt 1):E164–E171. doi: 10.1152/ajpendo.1986.251.2.E164. [DOI] [PubMed] [Google Scholar]
  6. Di Salvo J., Gifford D., Kokkinakis A. A multisubstrate Ca2+ and cyclic nucleotide independent kinase from vascular smooth muscle: modulation of activity by polycations. Biochem Biophys Res Commun. 1986 Apr 29;136(2):789–796. doi: 10.1016/0006-291x(86)90509-7. [DOI] [PubMed] [Google Scholar]
  7. Di Salvo J., Gifford D., Kokkinakis A. Modulation of aortic protein phosphatase activity by polylysine. Proc Soc Exp Biol Med. 1984 Oct;177(1):24–32. doi: 10.3181/00379727-177-41907. [DOI] [PubMed] [Google Scholar]
  8. Dilley R. A. Effect of poly-L-lysine on energy-linked chloroplast reactions. Biochemistry. 1968 Jan;7(1):338–346. doi: 10.1021/bi00841a043. [DOI] [PubMed] [Google Scholar]
  9. Eidels L., Hart D. A. Effect of polymers of L-lysine on the cytotoxic action of diphtheria toxin. Infect Immun. 1982 Sep;37(3):1054–1058. doi: 10.1128/iai.37.3.1054-1058.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foreman J. C., Lichtenstein L. M. Induction of histamine secretion by polycations. Biochim Biophys Acta. 1980 May 22;629(3):587–603. doi: 10.1016/0304-4165(80)90164-6. [DOI] [PubMed] [Google Scholar]
  11. Gatica M., Allende C. C., Antonelli M., Allende J. E. Polylysine-containing peptides, including the carboxyl-terminal segment of the human c-Ki-ras 2 protein, affect the activity of some key membrane enzymes. Proc Natl Acad Sci U S A. 1987 Jan;84(2):324–328. doi: 10.1073/pnas.84.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gentile F., Raptis A., Knipling L. G., Wolff J. Bordetella pertussis adenylate cyclase. Penetration into host cells. Eur J Biochem. 1988 Aug 15;175(3):447–453. doi: 10.1111/j.1432-1033.1988.tb14215.x. [DOI] [PubMed] [Google Scholar]
  13. Gentile F., Raptis A., Knipling L. G., Wolff J. Extracellular cAMP formation from host cell ATP by Bordetella pertussis adenylate cyclase. Biochim Biophys Acta. 1988 Aug 19;971(1):63–71. doi: 10.1016/0167-4889(88)90162-0. [DOI] [PubMed] [Google Scholar]
  14. Hanski E., Farfel Z. Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem. 1985 May 10;260(9):5526–5532. [PubMed] [Google Scholar]
  15. Hewlett E. L., Urban M. A., Manclark C. R., Wolff J. Extracytoplasmic adenylate cyclase of Bordetella pertussis. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1926–1930. doi: 10.1073/pnas.73.6.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JAMES A. M., AMBROSE E. J., LOWICK J. H. Differences between the electrical charge carried by normal and homologous tumour cells. Nature. 1956 Mar 24;177(4508):576–577. doi: 10.1038/177576a0. [DOI] [PubMed] [Google Scholar]
  17. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mayhew E., Harlos J. P., Juliano R. L. The effect of polycations on cell membrane stability and transport processes. J Membr Biol. 1973;14(3):213–228. doi: 10.1007/BF01868079. [DOI] [PubMed] [Google Scholar]
  19. Paterlini M. G., Freedman T. B., Nafie L. A. Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution. Biopolymers. 1986 Sep;25(9):1751–1765. doi: 10.1002/bip.360250915. [DOI] [PubMed] [Google Scholar]
  20. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  21. Tiffany M. L., Krimm S. New chain conformations of poly(glutamic acid) and polylysine. Biopolymers. 1968;6(9):1379–1382. doi: 10.1002/bip.1968.360060911. [DOI] [PubMed] [Google Scholar]
  22. Veldhuis J. D., Rodgers R. J., Hewlett E. L. Actions of cyclic adenosine monophosphate on the cytodifferentiation of ovarian cells: studies in cultured swine granulosa cells using a novel exogenous adenylate cyclase from Bordetella pertussis. Mol Endocrinol. 1988 Jun;2(6):499–506. doi: 10.1210/mend-2-6-499. [DOI] [PubMed] [Google Scholar]
  23. Walter A., Steer C. J., Blumenthal R. Polylysine induces pH-dependent fusion of acidic phospholipid vesicles: a model for polycation-induced fusion. Biochim Biophys Acta. 1986 Oct 9;861(2):319–330. doi: 10.1016/0005-2736(86)90434-7. [DOI] [PubMed] [Google Scholar]
  24. Wolff J., Cook G. H. Charge effects in the activation of adenylate cyclase. J Biol Chem. 1975 Sep 10;250(17):6897–6903. [PubMed] [Google Scholar]
  25. Wolff J., Cook G. H., Goldhammer A. R., Berkowitz S. A. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3841–3844. doi: 10.1073/pnas.77.7.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolff J., Cook G. H. Simulation of hormone effects by polycations. Endocrinology. 1977 Dec;101(6):1767–1775. doi: 10.1210/endo-101-6-1767. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES