Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 May;57(5):1499–1505. doi: 10.1128/iai.57.5.1499-1505.1989

Independence of neutrophil respiratory burst oxidant generation from the early cytosolic calcium response after stimulation with unopsonized Candida albicans hyphae.

D R Wysong 1, C A Lyman 1, R D Diamond 1
PMCID: PMC313305  PMID: 2540091

Abstract

We previously noted differences between neutrophil responses to unopsonized Candida albicans hyphae and responses to other particulate stimuli such as opsonized hyphae or zymosan; these differences include delayed rises in cytosolic calcium [( Ca2+]i), 1,4,5-inositol trisphosphate, and superoxide release and the total absence of early membrane depolarization. Respiratory burst stimulation is required for killing of C. albicans hyphae. Since an early rise in [Ca2+]i may act as a second messenger for burst activation by most agonists, we chelated (Ca2+)i and extracellular Ca2+ [( Ca2+)e] to compare requirements for superoxide responses to hyphae and other stimuli. Intracellular chelation, which ablated early [Ca2+]i rises, eliminated the fMet-Leu-Phe-induced respiratory burst and profoundly reduced that response to opsonized zymosan (by 96.7%), but chelation of both (Ca2+)i and (Ca2+)e only partially inhibited responses to opsonized and unopsonized hyphae (60.5 and 23.3%, respectively; the latter exceeded absolute responses evoked by opsonized zymosan, a 12-fold-more-potent stimulus for unchelated cells). Simultaneous (Ca2+)i and (Ca2+)e chelation further decreased superoxide responses to opsonized zymosan and hyphae (99.4 and 90.4%, respectively) but not to unopsonized hyphae (26.7% inhibition). Though both ingestible (zymosan) and uningestible (hyphae) opsonized particulate stimuli elicited reduced but significant respiratory bursts without early [Ca2+]i rises, the greater superoxide responses and sensitivity to chelation with opsonized zymosan suggest important differences in initiation and/or regulation of responses to these particulate stimuli. In contrast, the respiratory burst elicited by unopsonized hyphae appeared largely Ca2+ independent. If different events mediate neutrophil activation by opsonized and unopsonized hyphae, candidacidal activity in vivo may vary under divergent conditions with specific localized sites of infection.

Full text

PDF
1499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apfeldorf W. J., Melnick D. A., Meshulam T., Rasmussen H., Malech H. L. A transient rise in intracellular free calcium is not a sufficient stimulus for respiratory burst activation in human polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1985 Oct 30;132(2):674–680. doi: 10.1016/0006-291x(85)91185-4. [DOI] [PubMed] [Google Scholar]
  2. BEESON P. B., ROWLEY D. The anticomplementary effect of kidney tissue; its association with ammonia production. J Exp Med. 1959 Nov 1;110:685–697. doi: 10.1084/jem.110.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banno Y., Nakashima S., Tohmatsu T., Nozawa Y., Lapetina E. G. GTP and GDP will stimulate platelet cytosolic phospholipase C independently of Ca2+. Biochem Biophys Res Commun. 1986 Oct 30;140(2):728–734. doi: 10.1016/0006-291x(86)90792-8. [DOI] [PubMed] [Google Scholar]
  4. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  5. Chandler D. E., Kazilek C. J. Calcium signals in neutrophils can be divided into three distinct phases. Biochim Biophys Acta. 1987 Nov 12;931(2):175–179. doi: 10.1016/0167-4889(87)90204-7. [DOI] [PubMed] [Google Scholar]
  6. Cockcroft S. Ca2+-dependent conversion of phosphatidylinositol to phosphatidate in neutrophils stimulated with fMet-Leu-Phe or ionophore A23187. Biochim Biophys Acta. 1984 Aug 15;795(1):37–46. doi: 10.1016/0005-2760(84)90102-4. [DOI] [PubMed] [Google Scholar]
  7. Cohen H. J., Newburger P. E., Chovaniec M. E., Whitin J. C., Simons E. R. Opsonized zymosan-stimulated granulocytes-activation and activity of the superoxide-generating system and membrane potential changes. Blood. 1981 Nov;58(5):975–982. [PubMed] [Google Scholar]
  8. Cohen I. R., Sciutto M. S., Brown G. L., Polk H. C., Jr Failure of opsonization as a sign of lethal sepsis. J Infect Dis. 1984 Apr;149(4):651–651. doi: 10.1093/infdis/149.4.651. [DOI] [PubMed] [Google Scholar]
  9. Curnutte J. T., Babior B. M., Karnovsky M. L. Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process. J Clin Invest. 1979 Apr;63(4):637–647. doi: 10.1172/JCI109346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daimond R. D., Krzesicki R. Mechanisms of attachment of neutrophils to Candida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudohyphae by microbicidal processes of neutrophils in vitro. J Clin Invest. 1978 Feb;61(2):360–369. doi: 10.1172/JCI108946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devalon M. L., Elliott G. R., Regelmann W. E. Oxidative response of human neutrophils, monocytes, and alveolar macrophages induced by unopsonized surface-adherent Staphylococcus aureus. Infect Immun. 1987 Oct;55(10):2398–2403. doi: 10.1128/iai.55.10.2398-2403.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diamond R. D., Clark R. A., Haudenschild C. C. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J Clin Invest. 1980 Nov;66(5):908–917. doi: 10.1172/JCI109958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diamond R. D., Krzesicki R., Jao W. Damage to pseudohyphal forms of Candida albicans by neutrophils in the absence of serum in vitro. J Clin Invest. 1978 Feb;61(2):349–359. doi: 10.1172/JCI108945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisenberg E. S., Leviton I., Soeiro R. Fungal peritonitis in patients receiving peritoneal dialysis: experience with 11 patients and review of the literature. Rev Infect Dis. 1986 May-Jun;8(3):309–321. doi: 10.1093/clinids/8.3.309. [DOI] [PubMed] [Google Scholar]
  15. English D., Debono D. J., Gabig T. G. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilization and functional activation in fluoride-treated neutrophils. J Clin Invest. 1987 Jul;80(1):145–153. doi: 10.1172/JCI113040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. English D., Roloff J. S., Lukens J. N. Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils. Blood. 1981 Jul;58(1):129–134. [PubMed] [Google Scholar]
  17. Finkel T. H., Pabst M. J., Suzuki H., Guthrie L. A., Forehand J. R., Phillips W. A., Johnston R. B., Jr Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin. Implications for regulation of the respiratory burst. J Biol Chem. 1987 Sep 15;262(26):12589–12596. [PubMed] [Google Scholar]
  18. Giclas P. C., King T. E., Baker S. L., Russo J., Henson P. M. Complement activity in normal rabbit bronchoalveolar fluid. Description of an inhibitor of C3 activation. Am Rev Respir Dis. 1987 Feb;135(2):403–411. doi: 10.1164/arrd.1987.135.2.403. [DOI] [PubMed] [Google Scholar]
  19. Gresham H. D., McGarr J. A., Shackelford P. G., Brown E. J. Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear leukocytes from patients with chronic granulomatous disease. J Clin Invest. 1988 Oct;82(4):1192–1201. doi: 10.1172/JCI113716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grinstein S., Furuya W. Receptor-mediated activation of electropermeabilized neutrophils. Evidence for a Ca2+- and protein kinase C-independent signaling pathway. J Biol Chem. 1988 Feb 5;263(4):1779–1783. [PubMed] [Google Scholar]
  21. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  22. Hallett M. B., Campbell A. K. Is intracellular Ca2+ the trigger for oxygen radical production by polymorphonuclear leucocytes? Cell Calcium. 1984 Feb;5(1):1–19. doi: 10.1016/0143-4160(84)90150-7. [DOI] [PubMed] [Google Scholar]
  23. Harms D. Comparative quantitation of immunoglobulin G (IgG) in cerebrospinal fluid and serum of children. Eur Neurol. 1975;13(1):54–64. doi: 10.1159/000114662. [DOI] [PubMed] [Google Scholar]
  24. Hartiala K. T., Scott I. G., Viljanen M. K., Akerman K. E. Lack of correlation between calcium mobilization and respiratory burst activation induced by chemotactic factors in rabbit polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1987 Apr 29;144(2):794–800. doi: 10.1016/s0006-291x(87)80034-7. [DOI] [PubMed] [Google Scholar]
  25. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kazura J. W., de Brito P., Rabbege J., Aikawa M. Role of granulocyte oxygen products in damage of Schistosoma mansoni eggs in vitro. J Clin Invest. 1985 Apr;75(4):1297–1307. doi: 10.1172/JCI111830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kolotila M. P., Diamond R. D. Stimulation of neutrophil actin polymerization and degranulation by opsonized and unopsonized Candida albicans hyphae and zymosan. Infect Immun. 1988 Aug;56(8):2016–2022. doi: 10.1128/iai.56.8.2016-2022.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Korchak H. M., Rutherford L. E., Weissmann G. Stimulus response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability. J Biol Chem. 1984 Apr 10;259(7):4070–4075. [PubMed] [Google Scholar]
  29. Korchak H. M., Vienne K., Rutherford L. E., Wilkenfeld C., Finkelstein M. C., Weissmann G. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J Biol Chem. 1984 Apr 10;259(7):4076–4082. [PubMed] [Google Scholar]
  30. Leong P. A., Schwab J. H., Cohen M. S. Interaction of group A streptococcal peptidoglycan polysaccharide with human polymorphonuclear leukocytes: implications for pathogenesis of chronic inflammation. Infect Immun. 1984 Jul;45(1):160–165. doi: 10.1128/iai.45.1.160-165.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Levitz S. M., Lyman C. A., Murata T., Sullivan J. A., Mandell G. L., Diamond R. D. Cytosolic calcium changes in individual neutrophils stimulated by opsonized and unopsonized Candida albicans hyphae. Infect Immun. 1987 Nov;55(11):2783–2788. doi: 10.1128/iai.55.11.2783-2788.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lew P. D., Wollheim C. B., Waldvogel F. A., Pozzan T. Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils. J Cell Biol. 1984 Oct;99(4 Pt 1):1212–1220. doi: 10.1083/jcb.99.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lyman C. A., Simons E. R., Melnick D. A., Diamond R. D. Induction of signal transduction in human neutrophils by Candida albicans hyphae: the role of pertussis toxin-sensitive guanosine triphosphate-binding proteins. J Infect Dis. 1988 Nov;158(5):1056–1064. doi: 10.1093/infdis/158.5.1056. [DOI] [PubMed] [Google Scholar]
  34. MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
  35. Maridonneau-Parini I., Tringale S. M., Tauber A. I. Identification of distinct activation pathways of the human neutrophil NADPH-oxidase. J Immunol. 1986 Nov 1;137(9):2925–2929. [PubMed] [Google Scholar]
  36. Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Salamino F., Horecker B. L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6435–6439. doi: 10.1073/pnas.82.19.6435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Meshulam T., Diamond R. D., Lyman C. A., Wysong D. R., Melnick D. A. Temporal association of calcium mobilization, inositol trisphosphate generation, and superoxide anion release by human neutrophils activated by serum opsonized and nonopsonized particulate stimuli. Biochem Biophys Res Commun. 1988 Jan 29;150(2):532–539. doi: 10.1016/0006-291x(88)90426-3. [DOI] [PubMed] [Google Scholar]
  38. Meshulam T., Proto P., Diamond R. D., Melnick D. A. Calcium modulation and chemotactic response: divergent stimulation of neutrophil chemotaxis and cytosolic calcium response by the chemotactic peptide receptor. J Immunol. 1986 Sep 15;137(6):1954–1960. [PubMed] [Google Scholar]
  39. Moscat J., Herrero C., Garcia-Barreno P., Municio A. M. Zymosan-induced release of inositol phosphates at resting cytosolic Ca2+ concentrations in macrophages. Biochem J. 1987 Mar 1;242(2):441–445. doi: 10.1042/bj2420441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Murata T., Sullivan J. A., Sawyer D. W., Mandell G. L. Influence of type and opsonization of ingested particle on intracellular free calcium distribution and superoxide production by human neutrophils. Infect Immun. 1987 Aug;55(8):1784–1791. doi: 10.1128/iai.55.8.1784-1791.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Myers M. A., McPhail L. C., Snyderman R. Redistribution of protein kinase C activity in human monocytes: correlation with activation of the respiratory burst. J Immunol. 1985 Nov;135(5):3411–3416. [PubMed] [Google Scholar]
  42. Naccache P. H., Sha'afi R. I. Granulocyte activation. Biochemical events associated with the mobilization of calcium. Surv Immunol Res. 1984;3(4):288–294. [PubMed] [Google Scholar]
  43. Nakagawara M., Takeshige K., Sumimoto H., Yoshitake J., Minakami S. Superoxide release and intracellular free calcium of calcium-depleted human neutrophils stimulated by N-formyl-methionyl-leucyl-phenylalanine. Biochim Biophys Acta. 1984 Sep 14;805(1):97–103. doi: 10.1016/0167-4889(84)90041-7. [DOI] [PubMed] [Google Scholar]
  44. Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
  45. Perfect J. R., Durack D. T. Chemotactic activity of cerebrospinal fluid in experimental cryptococcal meningitis. Sabouraudia. 1985 Feb;23(1):37–45. doi: 10.1080/00362178585380071. [DOI] [PubMed] [Google Scholar]
  46. Pontremoli S., Melloni E., Michetti M., Salamino F., Sparatore B., Horecker B. L. An endogenous activator of the Ca2+-dependent proteinase of human neutrophils that increases its affinity for Ca2+. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1740–1743. doi: 10.1073/pnas.85.6.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pozzan T., Lew D. P., Wollheim C. B., Tsien R. Y. Is cytosolic ionized calcium regulating neutrophil activation? Science. 1983 Sep 30;221(4618):1413–1415. doi: 10.1126/science.6310757. [DOI] [PubMed] [Google Scholar]
  48. Reynolds H. Y. Immunoglobulin G and its function in the human respiratory tract. Mayo Clin Proc. 1988 Feb;63(2):161–174. doi: 10.1016/s0025-6196(12)64949-0. [DOI] [PubMed] [Google Scholar]
  49. Romeo D., Zabucchi G., Miani N., Rossi F. Ion movement across leukocyte plasma membrane and excitation of their metabolism. Nature. 1975 Feb 13;253(5492):542–544. doi: 10.1038/253542a0. [DOI] [PubMed] [Google Scholar]
  50. Suter S., Berger D., Despont J. P., Waldvogel F. Low levels of functional of alpha 1-proteinase inhibitor in the promotion of C3-cleavage by granulocyte-neutral proteases in pleural empyema. J Infect Dis. 1984 Jun;149(6):935–941. doi: 10.1093/infdis/149.6.935. [DOI] [PubMed] [Google Scholar]
  51. Truett A. P., 3rd, Verghese M. W., Dillon S. B., Snyderman R. Calcium influx stimulates a second pathway for sustained diacylglycerol production in leukocytes activated by chemoattractants. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1549–1553. doi: 10.1073/pnas.85.5.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  53. Vandewalle P. L., Petersen N. O. Oxidation of reduced cytochrome c by hydrogen peroxide. Implications for superoxide assays. FEBS Lett. 1987 Jan 5;210(2):195–198. doi: 10.1016/0014-5793(87)81336-4. [DOI] [PubMed] [Google Scholar]
  54. Verbrugh H. A., Keane W. F., Hoidal J. R., Freiberg M. R., Elliott G. R., Peterson P. K. Peritoneal macrophages and opsonins: antibacterial defense in patients undergoing chronic peritoneal dialysis. J Infect Dis. 1983 Jun;147(6):1018–1029. doi: 10.1093/infdis/147.6.1018. [DOI] [PubMed] [Google Scholar]
  55. Waller M. IgG hydrolysis in abscesses. II. Hydrolysis of Ripley IgG by enzymes from abscess leucocytes. Immunology. 1974 Apr;26(4):735–741. [PMC free article] [PubMed] [Google Scholar]
  56. White J. R., Naccache P. H., Molski T. F., Borgeat P., Sha'afi R. I. Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor. Biochem Biophys Res Commun. 1983 May 31;113(1):44–50. doi: 10.1016/0006-291x(83)90429-1. [DOI] [PubMed] [Google Scholar]
  57. Whitin J. C., Takahashi K., Cohen H. J. Activation of neutrophil superoxide production by concanavalin A can occur at low levels of intracellular ionized calcium. Blood. 1987 Mar;69(3):762–768. [PubMed] [Google Scholar]
  58. Zwahlen A., Nydegger U. E., Vaudaux P., Lambert P. H., Waldvogel F. A. Complement-mediated opsonic activity in normal and infected human cerebrospinal fluid: early response during bacterial meningitis. J Infect Dis. 1982 May;145(5):635–646. doi: 10.1093/infdis/145.2.635. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES