Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 May;57(5):1512–1516. doi: 10.1128/iai.57.5.1512-1516.1989

Stimulation of macrophage phagocytic but not bactericidal activity by colony-stimulating factor 1.

C Cheers 1, M Hill 1, A M Haigh 1, E R Stanley 1
PMCID: PMC313307  PMID: 2496031

Abstract

The ability of mouse peritoneal cells to phagocytose and lyse Listeria monocytogenes was measured after the cells were incubated with purified murine macrophage-specific colony-stimulating factor (CSF-1). Activation of combined phagocytic and bacteriolytic ability required 24 h, with an optimal dose of 1,000 U of CSF-1 per ml. No activation was achieved with a shorter period of incubation, known to be sufficient for GM-CSF to stimulate phagocytosis by granulocytes, and there was no advantage in longer exposure. After 24 h in 1,000 U of CSF-1, macrophages showed visibly increased spreading on the plastic petri dish. Activated cells examined microscopically showed an increase in the number of phagocytic cells and in the numbers of bacteria per phagocytic cell. This increased phagocytic ability was evident also in the increase in the amount of radioactivity associated with the cells following a 30-min incubation with radiolabeled bacteria. When these cells were carefully washed, the percentage of this initial uptake released during the next 2 h was not increased by pretreatment of the cells with CSF-1, showing that the effect of this growth factor was on phagocytosis of the bacteria not on the killing mechanisms per se.

Full text

PDF
1512

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ampel N. M., Wing E. J., Waheed A., Shadduck R. K. Stimulatory effects of purified macrophage colony-stimulating factor on murine resident peritoneal macrophages. Cell Immunol. 1986 Feb;97(2):344–356. doi: 10.1016/0008-8749(86)90405-3. [DOI] [PubMed] [Google Scholar]
  2. Bortolussi R., Vandenbroucke-Grauls C. M., van Asbeck B. S., Verhoef J. Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems. Infect Immun. 1987 Dec;55(12):3197–3203. doi: 10.1128/iai.55.12.3197-3203.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchmeier N. A., Schreiber R. D. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7404–7408. doi: 10.1073/pnas.82.21.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheers C., Haigh A. M., Kelso A., Metcalf D., Stanley E. R., Young A. M. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun. 1988 Jan;56(1):247–251. doi: 10.1128/iai.56.1.247-251.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheers C., McKenzie I. F., Pavlov H., Waid C., York J. Resistance and susceptibility of mice to bacterial infection: course of listeriosis in resistant or susceptible mice. Infect Immun. 1978 Mar;19(3):763–770. doi: 10.1128/iai.19.3.763-770.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheers C., Stanley E. R. Macrophage production during murine listeriosis: colony-stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice. Infect Immun. 1988 Nov;56(11):2972–2978. doi: 10.1128/iai.56.11.2972-2978.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies W. A. Kinetics of killing Listeria monocytogenes by macrophages: correlation of 3H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model. J Reticuloendothel Soc. 1982 Dec;32(6):461–476. [PubMed] [Google Scholar]
  8. Godfrey R. W., Wilder M. S. Relationships between oxidative metabolism, macrophage activation, and antilisterial activity. J Leukoc Biol. 1984 Oct;36(4):533–543. doi: 10.1002/jlb.36.4.533. [DOI] [PubMed] [Google Scholar]
  9. Havell E. A., Spitalny G. L., Patel P. J. Enhanced production of murine interferon gamma by T cells generated in response to bacterial infection. J Exp Med. 1982 Jul 1;156(1):112–127. doi: 10.1084/jem.156.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karbassi A., Becker J. M., Foster J. S., Moore R. N. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol. 1987 Jul 15;139(2):417–421. [PubMed] [Google Scholar]
  11. Lee M. T., Warren M. K. CSF-1-induced resistance to viral infection in murine macrophages. J Immunol. 1987 May 1;138(9):3019–3022. [PubMed] [Google Scholar]
  12. Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986 Feb;67(2):257–267. [PubMed] [Google Scholar]
  13. Saito H., Tomioka H., Yamada Y., Jidoi J. Oxidative and phagocytic functions of macrophages during infections induced in mice by Mycobacterium intracellulare and Listeria monocytogenes. J Gen Microbiol. 1986 Apr;132(4):1117–1125. doi: 10.1099/00221287-132-4-1117. [DOI] [PubMed] [Google Scholar]
  14. Stanley E. R., Jubinsky P. T. Factors affecting the growth and differentiation of haemopoietic cells in culture. Clin Haematol. 1984 Jun;13(2):329–348. [PubMed] [Google Scholar]
  15. Stanley E. R. The macrophage colony-stimulating factor, CSF-1. Methods Enzymol. 1985;116:564–587. doi: 10.1016/s0076-6879(85)16044-1. [DOI] [PubMed] [Google Scholar]
  16. Tushinski R. J., Oliver I. T., Guilbert L. J., Tynan P. W., Warner J. R., Stanley E. R. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell. 1982 Jan;28(1):71–81. doi: 10.1016/0092-8674(82)90376-2. [DOI] [PubMed] [Google Scholar]
  17. Wing E. J., Ampel N. M., Waheed A., Shadduck R. K. Macrophage colony-stimulating factor (M-CSF) enhances the capacity of murine macrophages to secrete oxygen reduction products. J Immunol. 1985 Sep;135(3):2052–2056. [PubMed] [Google Scholar]
  18. Wing E. J., Waheed A., Shadduck R. K., Nagle L. S., Stephenson K. Effect of colony stimulating factor on murine macrophages. Induction of antitumor activity. J Clin Invest. 1982 Feb;69(2):270–276. doi: 10.1172/JCI110449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wood P. R., Spanidis V., Frangos K., Cheers C. The in vitro bactericidal activity of peritoneal and spleen cells from Listeria-resistant and -susceptible mouse strains. Cell Immunol. 1986 Apr 15;99(1):160–169. doi: 10.1016/0008-8749(86)90225-x. [DOI] [PubMed] [Google Scholar]
  20. Young A. M., Cheers C. Colony-forming cells and colony-stimulating activity during listeriosis in genetically resistant or susceptible mice. Cell Immunol. 1986 Feb;97(2):227–237. doi: 10.1016/0008-8749(86)90393-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES