Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 May;57(5):1556–1560. doi: 10.1128/iai.57.5.1556-1560.1989

Role of lipopolysaccharide in induction of Ia expression during infection with gram-negative bacteria.

N E Marshall 1, H K Ziegler 1
PMCID: PMC313313  PMID: 2496032

Abstract

Lipopolysaccharide (LPS), a major component of the outer membrane of gram-negative bacteria, is known to be a potent modulator of many host immune functions, including the expression of products of the class II major histocompatibility locus (Ia molecules) by macrophages. LPS-mediated Ia induction is controlled by the lps gene. We sought to determine the role of LPS in the induction of Ia expression during infection with gram-negative bacteria. To address this question, we tested a simple prediction: if LPS is the primary determinant of Ia induction during gram-negative infection, then the Ia response to intraperitoneal injection of these organisms should be under the control of the lps gene. We found that while both LPS-responder and LPS-low-responder mice showed strong Ia responses to injection of either a gram-positive bacterium (Listeria monocytogenes) or concanavalin A, only the LPS-responder mice responded strongly to gram-negative organisms or to LPS alone. We interpret these results as strong evidence for the role of LPS as the primary determinant of Ia induction by gram-negative bacteria.

Full text

PDF
1556

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanchard D. K., Friedman H., Stewart W. E., 2nd, Klein T. W., Djeu J. Y. Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model. Infect Immun. 1988 May;56(5):1187–1193. doi: 10.1128/iai.56.5.1187-1193.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hagberg L., Briles D. E., Edén C. S. Evidence for separate genetic defects in C3H/HeJ and C3HeB/FeJ mice, that affect susceptibility to gram-negative infections. J Immunol. 1985 Jun;134(6):4118–4122. [PubMed] [Google Scholar]
  4. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Killion J. W., Morrison D. C. Protection of C3H/HeJ mice from lethal Salmonella typhimurium LT2 infection by immunization with lipopolysaccharide-lipid A-associated protein complexes. Infect Immun. 1986 Oct;54(1):1–8. doi: 10.1128/iai.54.1.1-8.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lissner C. R., Weinstein D. L., O'Brien A. D. Mouse chromosome 1 Ity locus regulates microbicidal activity of isolated peritoneal macrophages against a diverse group of intracellular and extracellular bacteria. J Immunol. 1985 Jul;135(1):544–547. [PubMed] [Google Scholar]
  7. Meltzer M. S., Nacy C. A. Macrophages in resistance to rickettsial infection: susceptibility to lethal effects of Rickettsia akari infection in mouse strains with defective macrophage function. Cell Immunol. 1980 Sep 1;54(2):487–490. doi: 10.1016/0008-8749(80)90229-4. [DOI] [PubMed] [Google Scholar]
  8. Morrison D. C., Ulevitch R. J. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol. 1978 Nov;93(2):526–618. [PMC free article] [PubMed] [Google Scholar]
  9. O'Brien A. D., Rosenstreich D. L. Genetic control of the susceptibility of C3HeB/FeJ mice to Salmonella typhimurium is regulated by a locus distinct from known salmonella response genes. J Immunol. 1983 Dec;131(6):2613–2615. [PubMed] [Google Scholar]
  10. O'Brien A. D., Rosenstreich D. L., Scher I., Campbell G. H., MacDermott R. P., Formal S. B. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol. 1980 Jan;124(1):20–24. [PubMed] [Google Scholar]
  11. Shultz L. D., Sidman C. L. Genetically determined murine models of immunodeficiency. Annu Rev Immunol. 1987;5:367–403. doi: 10.1146/annurev.iy.05.040187.002055. [DOI] [PubMed] [Google Scholar]
  12. Wentworth P. A., Ziegler H. K. Induction of macrophage Ia expression by lipopolysaccharide and Listeria monocytogenes in congenitally athymic nude mice. J Immunol. 1987 May 15;138(10):3167–3173. [PubMed] [Google Scholar]
  13. Wood P. R., Clark I. A. Genetic control of Propionibacterium acnes-induced protection of mice against Babesia microti. Infect Immun. 1982 Jan;35(1):52–57. doi: 10.1128/iai.35.1.52-57.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Woods J. P., Frelinger J. A., Warrack G., Cannon J. G. Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect Immun. 1988 Aug;56(8):1950–1955. doi: 10.1128/iai.56.8.1950-1955.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ziegler H. K., Staffileno L. K., Wentworth P. Modulation of macrophage Ia-expression by lipopolysaccharide. I. Induction of Ia expression in vivo. J Immunol. 1984 Oct;133(4):1825–1835. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES