Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Aug;57(8):2306–2312. doi: 10.1128/iai.57.8.2306-2312.1989

Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus.

J M Kuypers 1, R A Proctor 1
PMCID: PMC313447  PMID: 2545622

Abstract

Isogenic strains of Staphylococcus aureus, differing in fibronectin binding, were constructed for studies of the contribution of fibronectin binding to the in vivo pathogenesis of staphylococcal disease. Mutagenesis of S. aureus 879R4S was accomplished by mating with Enterococcus faecalis FA378 that carried the transposon Tn918. Four low-fibronectin-binding mutants were identified that bound 24- to 35-fold less fibronectin than the parent strain did. A spectinomycin-resistant strain, R4SSp, was transduced by a bacteriophage (80 alpha) lysate propagated on a low-binding mutant of 879R4S to produce R4SSp/1536, which bound less fibronectin, contained a single copy of the transposon, and grew on spectinomycin-containing medium. Using a rat model of endocarditis, we determined the distribution of S. aureus R4SSp and its transductant in normal and cardiac catheterized rats. Cultures of heart tissue showed that catheterized rats challenged with the fibronectin-binding parent strain had over 250-fold more organisms in the left heart than did rats challenged with the low-binding transductant. The ability to bind fibronectin had no effect on the number of S. aureus cells cultured from other tissues. These data suggest that the ability of S. aureus to bind fibronectin is an important factor in establishing adherence to damaged heart valves in vivo.

Full text

PDF
2306

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clewell D. B., Flannagan S. E., Ike Y., Jones J. M., Gawron-Burke C. Sequence analysis of termini of conjugative transposon Tn916. J Bacteriol. 1988 Jul;170(7):3046–3052. doi: 10.1128/jb.170.7.3046-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clewell D. B., Yagi Y., Dunny G. M., Schultz S. K. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol. 1974 Jan;117(1):283–289. doi: 10.1128/jb.117.1.283-289.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrismann R., Roth D. E., Eppenberger H. M., Turner D. C. Arrangement of attachment-promoting, self-association, and heparin-binding sites in horse serum fibronectin. J Biol Chem. 1982 Jul 10;257(13):7381–7387. [PubMed] [Google Scholar]
  4. Franke A. E., Clewell D. B. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 1981 Jan;145(1):494–502. doi: 10.1128/jb.145.1.494-502.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gawron-Burke C., Clewell D. B. A transposon in Streptococcus faecalis with fertility properties. Nature. 1982 Nov 18;300(5889):281–284. doi: 10.1038/300281a0. [DOI] [PubMed] [Google Scholar]
  6. Homandberg G. A., Erickson J. W. Model of fibronectin tertiary structure based on studies of interactions between fragments. Biochemistry. 1986 Nov 4;25(22):6917–6925. doi: 10.1021/bi00370a027. [DOI] [PubMed] [Google Scholar]
  7. Hull R. A., Gill R. E., Hsu P., Minshew B. H., Falkow S. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun. 1981 Sep;33(3):933–938. doi: 10.1128/iai.33.3.933-938.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kasatiya S. S., Baldwin J. N. Nature of the determinant of tetracycline resistance in Staphylococcus aureus. Can J Microbiol. 1967 Aug;13(8):1079–1086. doi: 10.1139/m67-144. [DOI] [PubMed] [Google Scholar]
  9. Mosher D. F. Physiology of fibronectin. Annu Rev Med. 1984;35:561–575. doi: 10.1146/annurev.me.35.020184.003021. [DOI] [PubMed] [Google Scholar]
  10. Proctor R. A., Christman G., Mosher D. F. Fibronectin-induced agglutination of Staphylococcus aureus correlates with invasiveness. J Lab Clin Med. 1984 Oct;104(4):455–469. [PubMed] [Google Scholar]
  11. Proctor R. A., Mosher D. F., Olbrantz P. J. Fibronectin binding to Staphylococcus aureus. J Biol Chem. 1982 Dec 25;257(24):14788–14794. [PubMed] [Google Scholar]
  12. Recsei P., Kreiswirth B., O'Reilly M., Schlievert P., Gruss A., Novick R. P. Regulation of exoprotein gene expression in Staphylococcus aureus by agar. Mol Gen Genet. 1986 Jan;202(1):58–61. doi: 10.1007/BF00330517. [DOI] [PubMed] [Google Scholar]
  13. Santoro J., Levison M. E. Rat model of experimental endocarditis. Infect Immun. 1978 Mar;19(3):915–918. doi: 10.1128/iai.19.3.915-918.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (first of two parts). N Engl J Med. 1984 May 24;310(21):1368–1373. doi: 10.1056/NEJM198405243102107. [DOI] [PubMed] [Google Scholar]
  15. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  16. Thompson N. E., Pattee P. A. Genetic transformation in Staphylococcus aureus: demonstration of a competence-conferring factor of bacteriophage origin in bacteriophage 80 alpha lysates. J Bacteriol. 1981 Oct;148(1):294–300. doi: 10.1128/jb.148.1.294-300.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson R. L. Staphylococcal infective endocarditis. Mayo Clin Proc. 1982 Feb;57(2):106–114. [PubMed] [Google Scholar]
  18. Vercellotti G. M., McCarthy J. B., Lindholm P., Peterson P. K., Jacob H. S., Furcht L. T. Extracellular matrix proteins (fibronectin, laminin, and type IV collagen) bind and aggregate bacteria. Am J Pathol. 1985 Jul;120(1):13–21. [PMC free article] [PubMed] [Google Scholar]
  19. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES