Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Aug;57(8):2452–2456. doi: 10.1128/iai.57.8.2452-2456.1989

Selective inhibition of cytokine-induced lysozyme activity by tetanus toxin in the GG2EE macrophage cell line.

L Pitzurra 1, P Marconi 1, F Bistoni 1, E Blasi 1
PMCID: PMC313469  PMID: 2501219

Abstract

This study was designed to evaluate the effects of tetanus toxin (TT) on lysozyme (LZM) activity by the GG2EE macrophage cell line. GG2EE cells spontaneously produced low amounts of LZM, which were mostly secreted into the culture medium. Upon treatment with various cytokines, GG2EE cells exhibited altered LZM activity. In particular, exposure of GG2EE cells to alpha/beta interferon (IFN-alpha/beta) reduced LZM activity, as opposed to treatment with gamma interferon (IFN-gamma) or colony-stimulating factor 1, which potentiated LZM activity. Spontaneous LZM activity of GG2EE cells was not susceptible to TT action; in contrast, when IFN-gamma- or colony-stimulating factor 1-susceptible cells were treated with TT, a significant reduction on LZM activity was observed. The TT inhibitory effect was dose dependent and manifested only after a 6-h incubation of GG2EE cells with TT. Treatment of GG2EE cells with heat-inactivated TT as well as Ibc- and B-IIb-TT-derived fragments was found to be ineffective, while pretreatment with B-IIb- but not with Ibc-TT-derived fragment abrogated the TT effect. Overall, these data indicate the existence of a specific TT-GG2EE cell interaction, leading to selective inhibition of cytokine-induced LZM activity.

Full text

PDF
2452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bigalke H., Heller I., Bizzini B., Habermann E. Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol. 1981 Jun;316(3):244–251. doi: 10.1007/BF00505657. [DOI] [PubMed] [Google Scholar]
  2. Bizzini B., Grob P., Akert K. Papain-derived fragment IIc of tetanus toxin: its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res. 1981 Apr 6;210(1-2):291–299. doi: 10.1016/0006-8993(81)90902-1. [DOI] [PubMed] [Google Scholar]
  3. Bizzini B., Stoeckel K., Schwab M. An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem. 1977 Mar;28(3):529–542. doi: 10.1111/j.1471-4159.1977.tb10423.x. [DOI] [PubMed] [Google Scholar]
  4. Bizzini B. Tetanus toxin. Microbiol Rev. 1979 Jun;43(2):224–240. doi: 10.1128/mr.43.2.224-240.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blasi E., Mathieson B. J., Varesio L., Cleveland J. L., Borchert P. A., Rapp U. R. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature. 1985 Dec 19;318(6047):667–670. doi: 10.1038/318667a0. [DOI] [PubMed] [Google Scholar]
  6. Blasi E., Radzioch D., Durum S. K., Varesio L. A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. Eur J Immunol. 1987 Oct;17(10):1491–1498. doi: 10.1002/eji.1830171016. [DOI] [PubMed] [Google Scholar]
  7. Blasi E., Radzioch D., Varesio L. Inhibition of retroviral mRNA expression in the murine macrophage cell line GG2EE by biologic response modifiers. J Immunol. 1988 Sep 15;141(6):2153–2157. [PubMed] [Google Scholar]
  8. Eisenbarth G. S., Shimizu K., Bowring M. A., Wells S. Expression of receptors for tetanus toxin and monoclonal antibody A2B5 by pancreatic islet cells. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5066–5070. doi: 10.1073/pnas.79.16.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon S., Todd J., Cohn Z. A. In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med. 1974 May 1;139(5):1228–1248. doi: 10.1084/jem.139.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Habermann E., Albus U. Interaction between tetanus toxin and rabbit kidney: a comparison with rat brain preparations. J Neurochem. 1986 Apr;46(4):1219–1226. doi: 10.1111/j.1471-4159.1986.tb00641.x. [DOI] [PubMed] [Google Scholar]
  11. Hamilton T. A., Becton D. L., Somers S. D., Gray P. W., Adams D. O. Interferon-gamma modulates protein kinase C activity in murine peritoneal macrophages. J Biol Chem. 1985 Feb 10;260(3):1378–1381. [PubMed] [Google Scholar]
  12. Helting T. B., Ronneberger H. J., Vollerthun R., Neubauer V. Toxicity of papain-digested tetanus toxin. Pathological effect of fragment B in the absence of spastic paralysis. J Biol Chem. 1978 Jan 10;253(1):125–129. [PubMed] [Google Scholar]
  13. Helting T., Zwister O. Enzymatic breakdown of tetanus toxin. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1263–1270. doi: 10.1016/0006-291x(74)90832-8. [DOI] [PubMed] [Google Scholar]
  14. Ho J. L., Klempner M. S. Diminished activity of protein kinase C in tetanus toxin-treated macrophages and in the spinal cord of mice manifesting generalized tetanus intoxication. J Infect Dis. 1988 May;157(5):925–933. doi: 10.1093/infdis/157.5.925. [DOI] [PubMed] [Google Scholar]
  15. Ho J. L., Klempner M. S. Tetanus toxin inhibits secretion of lysosomal contents from human macrophages. J Infect Dis. 1985 Nov;152(5):922–929. doi: 10.1093/infdis/152.5.922. [DOI] [PubMed] [Google Scholar]
  16. Kasukabe T., Honma Y., Hozumi M. Specific inhibition by prostaglandin D2 and its metabolites of lysozyme synthesis in mouse macrophage-like cell line, Mm-1. Biochim Biophys Acta. 1985 Mar 21;844(3):330–336. doi: 10.1016/0167-4889(85)90134-x. [DOI] [PubMed] [Google Scholar]
  17. Ledley F. D., Lee G., Kohn L. D., Habig W. H., Hardegree M. C. Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J Biol Chem. 1977 Jun 25;252(12):4049–4055. [PubMed] [Google Scholar]
  18. Matsuda M., Yoneda M. Antigenic substructure of tetanus neurotoxin. Biochem Biophys Res Commun. 1977 Jul 11;77(1):268–274. doi: 10.1016/s0006-291x(77)80192-7. [DOI] [PubMed] [Google Scholar]
  19. Mellanby J., Green J. How does tetanus toxin act? Neuroscience. 1981;6(3):281–300. doi: 10.1016/0306-4522(81)90123-8. [DOI] [PubMed] [Google Scholar]
  20. Osserman E. F., Lawlor D. P. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J Exp Med. 1966 Nov 1;124(5):921–952. doi: 10.1084/jem.124.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pearce B. R., Gard A. L., Dutton G. R. Tetanus toxin inhibition of K+-stimulated [3H]GABA release from developing cell cultures of the rat cerebellum. J Neurochem. 1983 Mar;40(3):887–890. doi: 10.1111/j.1471-4159.1983.tb08064.x. [DOI] [PubMed] [Google Scholar]
  22. Penner R., Neher E., Dreyer F. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature. 1986 Nov 6;324(6092):76–78. doi: 10.1038/324076a0. [DOI] [PubMed] [Google Scholar]
  23. Schlick E., Hartung K., Chirigos M. A. Role of prostaglandin E and interferon in secretion of colony-stimulating factor by murine macrophages after in vitro treatment with biological response modifiers. Int J Immunopharmacol. 1984;6(5):407–418. doi: 10.1016/0192-0561(84)90078-x. [DOI] [PubMed] [Google Scholar]
  24. Warfel A. H., Zucker-Franklin D. Down-regulation of macrophage lysozyme by lipopolysaccharide and interferon. J Immunol. 1986 Jul 15;137(2):651–655. [PubMed] [Google Scholar]
  25. Wendon L. M., Gill D. M. Tetanus toxin action on cultured nerve cells does it modify a neuronal protein? Brain Res. 1982 Apr 22;238(1):292–297. doi: 10.1016/0006-8993(82)90800-9. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES