Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Sep;58(9):3151–3153. doi: 10.1128/iai.58.9.3151-3153.1990

Cyclosporin A treatment converts Leishmania donovani-infected C57BL/10 (curing) mice to a noncuring phenotype.

L E Adinolfi 1, P F Bonventre 1
PMCID: PMC313626  PMID: 2387638

Abstract

Cyclosporin A prevents visceralization of Leishmania major infection of BALB/c mice (N. C. Behforouz, C. D. Wenger, and B. A. Mathison, J. Immunol. 136:3067-3075, 1986; W. Solbach, K. Forberg, E. Kammerer, C. Bogdan, and M. Rollinghoff, J. Immunol. 134:702-707, 1986). We report that cyclosporin A exacerbates disseminated leishmaniasis caused by L. donovani in C57BL/10 mice. Normal mice challenged with 5 x 10(6) amastigotes intravenously cleared the infection within several months by spontaneous acquisition of cell-mediated immunity. In contrast, cyclosporin A administered daily intraperitoneally at a dose of 1.25 mg per mouse prevented development of curative immunity and converted C57BL/10 (curing) mice to a noncuring phenotype. A rationale for the contrasting effects of cyclosporin A in the two murine models of leishmaniasis is provided.

Full text

PDF
3151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adinolfi L. E., Bonventre P. F., Vander Pas M., Eppstein D. A. Synergistic effect of glucantime and a liposome-encapsulated muramyl dipeptide analog in therapy of experimental visceral leishmaniasis. Infect Immun. 1985 May;48(2):409–416. doi: 10.1128/iai.48.2.409-416.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behforouz N. C., Wenger C. D., Mathison B. A. Prophylactic treatment of BALB/c mice with cyclosporine A and its analog B-5-49 enhances resistance to Leishmania major. J Immunol. 1986 Apr 15;136(8):3067–3075. [PubMed] [Google Scholar]
  3. Blackwell J. M., Ulczak O. M. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: demonstration and characterization of suppressor T cells in noncure mice. Infect Immun. 1984 Apr;44(1):97–102. doi: 10.1128/iai.44.1.97-102.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley D. J., Taylor B. A., Blackwell J., Evans E. P., Freeman J. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol. 1979 Jul;37(1):7–14. [PMC free article] [PubMed] [Google Scholar]
  5. Bunjes D., Hardt C., Röllinghoff M., Wagner H. Cyclosporin A mediates immunosuppression of primary cytotoxic T cell responses by impairing the release of interleukin 1 and interleukin 2. Eur J Immunol. 1981 Aug;11(8):657–661. doi: 10.1002/eji.1830110812. [DOI] [PubMed] [Google Scholar]
  6. Granelli-Piperno A., Inaba K., Steinman R. M. Stimulation of lymphokine release from T lymphoblasts. Requirement for mRNA synthesis and inhibition by cyclosporin A. J Exp Med. 1984 Dec 1;160(6):1792–1802. doi: 10.1084/jem.160.6.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howard J. G., Hale C., Liew F. Y. Immunological regulation of experimental cutaneous leishmaniasis. III. Nature and significance of specific suppression of cell-mediated immunity in mice highly susceptible to Leishmania tropica. J Exp Med. 1980 Sep 1;152(3):594–607. doi: 10.1084/jem.152.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murray H. W., Stern J. J., Welte K., Rubin B. Y., Carriero S. M., Nathan C. F. Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue immune reaction, and response to treatment with interleukin 2 and interferon-gamma. J Immunol. 1987 Apr 1;138(7):2290–2297. [PubMed] [Google Scholar]
  10. Müller I., Pedrazzini T., Farrell J. P., Louis J. T-cell responses and immunity to experimental infection with leishmania major. Annu Rev Immunol. 1989;7:561–578. doi: 10.1146/annurev.iy.07.040189.003021. [DOI] [PubMed] [Google Scholar]
  11. Nickol A. D., Bonventre P. F. Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: immunosuppression by adherent spleen cells. Infect Immun. 1985 Oct;50(1):160–168. doi: 10.1128/iai.50.1.160-168.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Solbach W., Forberg K., Kammerer E., Bogdan C., Röllinghoff M. Suppressive effect of cyclosporin A on the development of Leishmania tropica-induced lesions in genetically susceptible BALB/c mice. J Immunol. 1986 Jul 15;137(2):702–707. [PubMed] [Google Scholar]
  13. Takashima T., Collins F. M. Immunosuppressive effect of cyclosporin A on Mycobacterium bovis BCG infections in mice. Infect Immun. 1987 Jul;55(7):1701–1706. doi: 10.1128/iai.55.7.1701-1706.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ulczak O. M., Blackwell J. M. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: the effects of parasite dose, cyclophosphamide and sublethal irradiation. Parasite Immunol. 1983 Sep;5(5):449–463. doi: 10.1111/j.1365-3024.1983.tb00760.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES