Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Oct;58(10):3233–3241. doi: 10.1128/iai.58.10.3233-3241.1990

Characterization of Leishmania major antigen-liposomes that protect BALB/c mice against cutaneous leishmaniasis.

L P Kahl 1, R Lelchuk 1, C A Scott 1, J Beesley 1
PMCID: PMC313644  PMID: 2401562

Abstract

Leishmania major antigen-liposomes prepared as dehydration-rehydration vesicles (DRV) and composed of equimolar amounts of L-alpha-distearoyl phosphatidylcholine and cholesterol confer high-level host-protective immunity against virulent homologous challenge to susceptible BALB/c mice. Physical and antigenic characterization of these protective liposomes is described. Both empty and L. major antigen-DRV were multilamellate and heterogeneous in size, ranging from 0.10 to 2.00 microns. Although the liposomes were made by using a crude mixture of promastigote antigens, lipophosphoglycan covered the liposome surface; this was demonstrated by immunogold electron microscopy. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis revealed preferential entrapment of the 63-kilodalton promastigote protease (gp63) into the DRV. We suggest that our L. major antigen-DRV merit further study because of their preferential entrapment of these two host protective antigens together with their long in vivo half-life. In addition, this report illustrates that intravenous or subcutaneous immunization of BALB/c mice with the same limited subset of protective antigens, predominantly lipophosphoglycan and gp63, within DRV liposomes leads to either protection and low splenic interleukin-3 production or to nonprotection and high splenic interleukin-3 production, respectively. This was consistent with our hypothesis that differential antigen presentation after administration of the same immunogen by the intravenous or the subcutaneous route results in differential T-cell activation.

Full text

PDF
3233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomford R. The comparative selectivity of adjuvants for humoral and cell-mediated immunity. II. Effect on delayed-type hypersensitivity in the mouse and guinea pig, and cell-mediated immunity to tumour antigens in the mouse of Freund's incomplete and complete adjuvants, alhydrogel, Corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin Exp Immunol. 1980 Feb;39(2):435–441. [PMC free article] [PubMed] [Google Scholar]
  2. Bordier C., Etges R. J., Ward J., Turner M. J., Cardoso de Almeida M. L. Leishmania and Trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5988–5991. doi: 10.1073/pnas.83.16.5988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bordier C. The promastigote surface protease of Leishmania. Parasitol Today. 1987 May;3(5):151–153. doi: 10.1016/0169-4758(87)90199-2. [DOI] [PubMed] [Google Scholar]
  4. Bottomly K., Janeway C. A., Jr Antigen presentation by B cells. Nature. 1989 Jan 5;337(6202):24–24. doi: 10.1038/337024a0. [DOI] [PubMed] [Google Scholar]
  5. Bouvier J., Etges R. J., Bordier C. Identification and purification of membrane and soluble forms of the major surface protein of Leishmania promastigotes. J Biol Chem. 1985 Dec 15;260(29):15504–15509. [PubMed] [Google Scholar]
  6. Champsi J., McMahon-Pratt D. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect Immun. 1988 Dec;56(12):3272–3279. doi: 10.1128/iai.56.12.3272-3279.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang C. S., Chang K. P. Monoclonal antibody affinity purification of a Leishmania membrane glycoprotein and its inhibition of leishmania-macrophage binding. Proc Natl Acad Sci U S A. 1986 Jan;83(1):100–104. doi: 10.1073/pnas.83.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang K. P. Leishmania donovani-macrophage binding mediated by surface glycoproteins/antigens: characterization in vitro by a radioisotopic assay. Mol Biochem Parasitol. 1981 Nov;4(1-2):67–76. doi: 10.1016/0166-6851(81)90030-x. [DOI] [PubMed] [Google Scholar]
  9. Chesnut R. W., Grey H. M. Studies on the capacity of B cells to serve as antigen-presenting cells. J Immunol. 1981 Mar;126(3):1075–1079. [PubMed] [Google Scholar]
  10. DeTolla L. J., Scott P. A., Farrell J. P. Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics. 1981;14(1-2):29–39. doi: 10.1007/BF00344297. [DOI] [PubMed] [Google Scholar]
  11. Feng Z. Y., Louis J., Kindler V., Pedrazzini T., Eliason J. F., Behin R., Vassalli P. Aggravation of experimental cutaneous leishmaniasis in mice by administration of interleukin 3. Eur J Immunol. 1988 Aug;18(8):1245–1251. doi: 10.1002/eji.1830180815. [DOI] [PubMed] [Google Scholar]
  12. Handman E., Ceredig R., Mitchell G. F. Murine cutaneous leishmaniasis: disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. Aust J Exp Biol Med Sci. 1979 Feb;57(1):9–29. doi: 10.1038/icb.1979.2. [DOI] [PubMed] [Google Scholar]
  13. Handman E., Goding J. W. The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J. 1985 Feb;4(2):329–336. doi: 10.1002/j.1460-2075.1985.tb03633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Handman E., Greenblatt C. L., Goding J. W. An amphipathic sulphated glycoconjugate of Leishmania: characterization with monoclonal antibodies. EMBO J. 1984 Oct;3(10):2301–2306. doi: 10.1002/j.1460-2075.1984.tb02130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Handman E., Mitchell G. F. Immunization with Leishmania receptor for macrophages protects mice against cutaneous leishmaniasis. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5910–5914. doi: 10.1073/pnas.82.17.5910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Handman E., Schnur L. F., Spithill T. W., Mitchell G. F. Passive transfer of Leishmania lipopolysaccharide confers parasite survival in macrophages. J Immunol. 1986 Dec 1;137(11):3608–3613. [PubMed] [Google Scholar]
  17. Hoover D. L., Nacy C. A. Macrophage activation to kill Leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J Immunol. 1984 Mar;132(3):1487–1493. [PubMed] [Google Scholar]
  18. Howard J. G., Hale C., Liew F. Y. Genetically determined susceptibility to Leishmania tropica infection is expressed by haematopoietic donor cells in mouse radiation chimaeras. Nature. 1980 Nov 13;288(5787):161–162. doi: 10.1038/288161a0. [DOI] [PubMed] [Google Scholar]
  19. Howard R. J., Kaushal D. C., Carter R. Radioiodination of parasite antigens with 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril (IODOGEN): studies with zygotes of Plasmodium gallinaceum. J Protozool. 1982 Feb;29(1):114–117. doi: 10.1111/j.1550-7408.1982.tb02891.x. [DOI] [PubMed] [Google Scholar]
  20. Kahl L. P., McMahon-Pratt D. Structural and antigenic characterization of a species- and promastigote-specific Leishmania mexicana amazonensis membrane protein. J Immunol. 1987 Mar 1;138(5):1587–1595. [PubMed] [Google Scholar]
  21. Kahl L. P., Scott C. A., Lelchuk R., Gregoriadis G., Liew F. Y. Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J Immunol. 1989 Jun 15;142(12):4441–4449. [PubMed] [Google Scholar]
  22. Khan M. M., Strober S., Melmon K. L. Regulatory effects of mast cells on lymphoid cells: the role of histamine type 1 receptors in the interaction between mast cells, helper T cells and natural suppressor cells. Cell Immunol. 1986 Nov;103(1):41–53. doi: 10.1016/0008-8749(86)90066-3. [DOI] [PubMed] [Google Scholar]
  23. Kirby C., Clarke J., Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett. 1980 Mar 10;111(2):324–328. doi: 10.1016/0014-5793(80)80819-2. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lelchuk R., Carrier M., Kahl L., Liew F. Y. Distinct IL-3 activation profile induced by intravenous versus subcutaneous routes of immunization. Cell Immunol. 1989 Sep;122(2):338–349. doi: 10.1016/0008-8749(89)90082-8. [DOI] [PubMed] [Google Scholar]
  26. Lelchuk R., Graveley R., Liew F. Y. Susceptibility to murine cutaneous leishmaniasis correlates with the capacity to generate interleukin 3 in response to leishmania antigen in vitro. Cell Immunol. 1988 Jan;111(1):66–76. doi: 10.1016/0008-8749(88)90051-2. [DOI] [PubMed] [Google Scholar]
  27. Mitchell G. F., Handman E., Spithill T. W. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med Sci. 1984 Apr;62(Pt 2):145–153. doi: 10.1038/icb.1984.14. [DOI] [PubMed] [Google Scholar]
  28. Mitchell G. F. The way ahead for vaccines and vaccination: symposium summary. Vaccine. 1988 Apr;6(2):200–205. doi: 10.1016/s0264-410x(88)80029-x. [DOI] [PubMed] [Google Scholar]
  29. Modabber F. A model for the mechanism of sensitivity of BALB/c mice to L. major and premunition in leishmaniasis. Ann Inst Pasteur Immunol. 1987 Sep-Oct;138(5):781–786. doi: 10.1016/s0769-2625(87)80038-7. [DOI] [PubMed] [Google Scholar]
  30. Orlandi P. A., Jr, Turco S. J. Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem. 1987 Jul 25;262(21):10384–10391. [PubMed] [Google Scholar]
  31. Russell D. G., Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J Immunol. 1988 Feb 15;140(4):1274–1279. [PubMed] [Google Scholar]
  32. Russell D. G., Talamas-Rohana P. Leishmania and the macrophage: a marriage of inconvenience. Immunol Today. 1989 Oct;10(10):328–333. doi: 10.1016/0167-5699(89)90188-6. [DOI] [PubMed] [Google Scholar]
  33. Russell D. G., Talamas-Rohana P., Zelechowski J. Antibodies raised against synthetic peptides from the Arg-Gly-Asp-containing region of the Leishmania surface protein gp63 cross-react with human C3 and interfere with gp63-mediated binding to macrophages. Infect Immun. 1989 Feb;57(2):630–632. doi: 10.1128/iai.57.2.630-632.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  35. Scott P., Pearce E., Natovitz P., Sher A. Vaccination against cutaneous leishmaniasis in a murine model. II. Immunologic properties of protective and nonprotective subfractions of soluble promastigote extract. J Immunol. 1987 Nov 1;139(9):3118–3125. [PubMed] [Google Scholar]
  36. Segal A. W., Gregoriadis G., Black C. D. Liposomes as vehicles for the local release of drugs. Clin Sci Mol Med. 1975 Aug;49(2):99–106. doi: 10.1042/cs0490099. [DOI] [PubMed] [Google Scholar]
  37. Segal A. W., Wills E. J., Richmond J. E., Slavin G., Black C. D., Gregoriadis G. Morphological observations on the cellular and subcellular destination of intravenously administered liposomes. Br J Exp Pathol. 1974 Aug;55(4):320–327. [PMC free article] [PubMed] [Google Scholar]
  38. Senior J., Crawley J. C., Gregoriadis G. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim Biophys Acta. 1985 Mar 29;839(1):1–8. doi: 10.1016/0304-4165(85)90174-6. [DOI] [PubMed] [Google Scholar]
  39. Senior J., Gregoriadis G. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci. 1982 Jun 14;30(24):2123–2136. doi: 10.1016/0024-3205(82)90455-6. [DOI] [PubMed] [Google Scholar]
  40. Steinman R. M. Dendritic cells. Transplantation. 1981 Mar;31(3):151–155. [PubMed] [Google Scholar]
  41. Stingl G., Tamaki K., Katz S. I. Origin and function of epidermal Langerhans cells. Immunol Rev. 1980;53:149–174. doi: 10.1111/j.1600-065x.1980.tb01043.x. [DOI] [PubMed] [Google Scholar]
  42. Tony H. P., Parker D. C. Major histocompatibility complex-restricted, polyclonal B cell responses resulting from helper T cell recognition of antiimmunoglobulin presented by small B lymphocytes. J Exp Med. 1985 Jan 1;161(1):223–241. doi: 10.1084/jem.161.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tümer A., Kirby C., Senior J., Gregoriadis G. Fate of cholesterol-rich liposomes after subcutaneous injection into rats. Biochim Biophys Acta. 1983 Oct 4;760(1):119–125. doi: 10.1016/0304-4165(83)90132-0. [DOI] [PubMed] [Google Scholar]
  45. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  46. de Ibarra A. A., Howard J. G., Snary D. Monoclonal antibodies to Leishmania tropica major: specificities and antigen location. Parasitology. 1982 Dec;85(Pt 3):523–531. doi: 10.1017/s0031182000056304. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES