Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Oct;58(10):3279–3285. doi: 10.1128/iai.58.10.3279-3285.1990

Selection of alpha/beta interferon- and gamma interferon-resistant rickettsiae by passage of Rickettsia prowazekii in L929 cells.

J Turco 1, H H Winkler 1
PMCID: PMC313650  PMID: 2119343

Abstract

The ability of endogenously produced alpha/beta interferon (IFN-alpha/beta) to inhibit rickettsial growth in infected L929 cell cultures was evaluated by comparing the growth of Rickettsia prowazekii Madrid E in untreated cultures and cultures treated with anti-mouse IFN (alpha + beta) serum. The endogenously produced IFN was neutralized, and rickettsial growth was enhanced in the antiserum-treated cultures. This inhibitory effect of endogenously produced IFN-alpha/beta was used to select rickettsiae resistant to IFN-alpha/beta. Rickettsiae were screened for resistance to IFN-alpha/beta after being cultured in untreated L929 cells for several weeks to several months. Two isolates derived from R. prowazekii Madrid E and two isolates derived from plaque-purified R. prowazekii Madrid E were plaque-purified twice, grown in embryonated hen eggs, and evaluated for resistance to IFN-alpha/beta and IFN-gamma. Compared with the parental rickettsial strain, all four isolates were significantly resistant to IFN-alpha/beta and IFN-gamma. In addition, they were as resistant or more resistant to IFN-gamma when compared with two previously described IFN-gamma resistant isolates that were selected in IFN-gamma-treated L929 cells. One of the two isolates from IFN-gamma-treated L929 cells was also resistant to IFN-alpha/beta; the other isolate was similar to the parental Madrid E strain in sensitivity to IFN-alpha/beta.

Full text

PDF
3279

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balayera N. M., Nikdskaya V. N. Enhanced virulence of the vaccine strain E of Rickettsia prowazeke on passaging in white mice and guinea pigs. Acta Virol. 1972 Jun;16(1):80–82. [PubMed] [Google Scholar]
  2. Collins T., Lapierre L. A., Fiers W., Strominger J. L., Pober J. S. Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A,B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986 Jan;83(2):446–450. doi: 10.1073/pnas.83.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Einhorn S., Eldor A., Vlodavsky I., Fuks Z., Panet A. Production and characterization of interferon from endothelial cells. J Cell Physiol. 1985 Feb;122(2):200–204. doi: 10.1002/jcp.1041220206. [DOI] [PubMed] [Google Scholar]
  4. GIMENEZ D. F. STAINING RICKETTSIAE IN YOLK-SAC CULTURES. Stain Technol. 1964 May;39:135–140. doi: 10.3109/10520296409061219. [DOI] [PubMed] [Google Scholar]
  5. Hanson B. Improved plaque assay for Rickettsia tsutsugamushi. Am J Trop Med Hyg. 1987 May;36(3):631–638. doi: 10.4269/ajtmh.1987.36.631. [DOI] [PubMed] [Google Scholar]
  6. Havell E. A., Vilcek J. Production of high-titered interferon in cultures of human diploid cells. Antimicrob Agents Chemother. 1972 Dec;2(6):476–484. doi: 10.1128/aac.2.6.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ignatovich V. F. Enhancement of the antigenic activity and virulence of the vaccine strain E of Rickettsia prow azeki by passages in cell culture. Acta Virol. 1975 Nov;19(6):481–485. [PubMed] [Google Scholar]
  8. Kazar J., Krautwurst P. A., Gordon F. B. Effect of Interferon and Interferon Inducers on Infections with a Nonviral Intracellular Microorganism, Rickettsia akari. Infect Immun. 1971 Jun;3(6):819–824. doi: 10.1128/iai.3.6.819-824.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kazár J., Brezina R., Urvölgyi J. Studies on the E strain of Rickettsia prowazeki. Bull World Health Organ. 1973;49(3):257–265. [PMC free article] [PubMed] [Google Scholar]
  10. Kazár J. Interferon-like inhibitor in mouse sera induced by rickettsiae. Acta Virol. 1966 May;10(3):277–277. [PubMed] [Google Scholar]
  11. Li H., Jerrells T. R., Spitalny G. L., Walker D. H. Gamma interferon as a crucial host defense against Rickettsia conorii in vivo. Infect Immun. 1987 May;55(5):1252–1255. doi: 10.1128/iai.55.5.1252-1255.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pober J. S., Collins T., Gimbrone M. A., Jr, Cotran R. S., Gitlin J. D., Fiers W., Clayberger C., Krensky A. M., Burakoff S. J., Reiss C. S. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature. 1983 Oct 20;305(5936):726–729. doi: 10.1038/305726a0. [DOI] [PubMed] [Google Scholar]
  13. Turco J., Winkler H. H. Cloned mouse interferon-gamma inhibits the growth of Rickettsia prowazekii in cultured mouse fibroblasts. J Exp Med. 1983 Dec 1;158(6):2159–2164. doi: 10.1084/jem.158.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Turco J., Winkler H. H. Comparison of the properties of antirickettsial activity and interferon in mouse lymphokines. Infect Immun. 1983 Oct;42(1):27–32. doi: 10.1128/iai.42.1.27-32.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Turco J., Winkler H. H. Effect of mouse lymphokines and cloned mouse interferon-gamma on the interaction of Rickettsia prowazekii with mouse macrophage-like RAW264.7 cells. Infect Immun. 1984 Aug;45(2):303–308. doi: 10.1128/iai.45.2.303-308.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Turco J., Winkler H. H. Gamma-interferon-induced inhibition of the growth of Rickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids. Infect Immun. 1986 Jul;53(1):38–46. doi: 10.1128/iai.53.1.38-46.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turco J., Winkler H. H. Inhibition of the growth of Rickettsia prowazekii in cultured fibroblasts by lymphokines. J Exp Med. 1983 Mar 1;157(3):974–986. doi: 10.1084/jem.157.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Turco J., Winkler H. H. Interferon-alpha/beta and Rickettsia prowazekii: induction and sensitivity. Ann N Y Acad Sci. 1990;590:168–186. doi: 10.1111/j.1749-6632.1990.tb42219.x. [DOI] [PubMed] [Google Scholar]
  19. Turco J., Winkler H. H. Isolation of Rickettsia prowazekii with reduced sensitivity to gamma interferon. Infect Immun. 1989 Jun;57(6):1765–1772. doi: 10.1128/iai.57.6.1765-1772.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walker T. S., Winkler H. H. Rickettsial hemolysis: rapid method for enumeration of metabolically active typhus rickettsiae. J Clin Microbiol. 1979 May;9(5):645–647. doi: 10.1128/jcm.9.5.645-647.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Winkler H. H., Turco J. Rickettsia prowazekii and the host cell: entry, growth and control of the parasite. Curr Top Microbiol Immunol. 1988;138:81–107. [PubMed] [Google Scholar]
  22. Wisseman C. L., Jr, Waddell A. Interferonlike factors from antigen- and mitogen-stimulated human leukocytes with antirickettsial and cytolytic actions on Rickettsia prowazekii. Infected human endothelial cells, fibroblasts, and macrophages. J Exp Med. 1983 Jun 1;157(6):1780–1793. doi: 10.1084/jem.157.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES