Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Nov;58(11):3788–3795. doi: 10.1128/iai.58.11.3788-3795.1990

Cloning and nucleotide sequence of the gene encoding arginine deiminase of Mycoplasma arginini.

T Ohno 1, O Ando 1, K Sugimura 1, M Taniai 1, M Suzuki 1, S Fukuda 1, Y Nagase 1, K Yamamoto 1, I Azuma 1
PMCID: PMC313729  PMID: 2228248

Abstract

The existence of a mycoplasmal arginine deiminase which catalyzes the conversion of L-arginine to L-citrulline has been postulated. Here we show the partial amino acid sequence of arginine deiminase of Mycoplasma arginini and the complete nucleotide sequence of the arginine deiminase gene of M. arginini. The open reading frame deduced from this sequence consists of 1,230 bp encoding 410 amino acids. The mature form of this enzyme contains 409 amino acids after the deletion of the first methionine. In this open reading frame, TGA nonsense codons are used as tryptophan codons; this usage was verified by determination of the amino acid sequence. The molecular weight of the enzyme calculated from the deduced amino acid sequence is 46,372. Recently, the nucleotide sequence of the arginine deiminase gene of M. arginini was reported by Kondo et al. (K. Kondo, H. Sone, H. Yoshida, T. Toida, K. Kanatani, Y.-M. Hong N. Nishino, and J. Tanaka, Mol. Gen. Genet. 221:81-86, 1990). However, their sequence differed from ours in several places and especially at the C terminus.

Full text

PDF
3788

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barile M. F., Leventhal B. G. Possible mechanism for Mycoplasma inhibition of lymphocyte transformation induced by phytohaemagglutinin. Nature. 1968 Aug 17;219(5155):750–752. doi: 10.1038/219751a0. [DOI] [PubMed] [Google Scholar]
  2. Baur H., Luethi E., Stalon V., Mercenier A., Haas D. Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem. 1989 Jan 15;179(1):53–60. doi: 10.1111/j.1432-1033.1989.tb14520.x. [DOI] [PubMed] [Google Scholar]
  3. Copperman R., Morton H. E. Reversible inhibition of mitosis in lymphocyte cultures by non-viable Mycoplasma. Proc Soc Exp Biol Med. 1966 Dec;123(3):790–795. doi: 10.3181/00379727-123-31605. [DOI] [PubMed] [Google Scholar]
  4. Dallo S. F., Chavoya A., Su C. J., Baseman J. B. DNA and protein sequence homologies between the adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. Infect Immun. 1989 Apr;57(4):1059–1065. doi: 10.1128/iai.57.4.1059-1065.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kondo K., Sone H., Yoshida H., Toida T., Kanatani K., Hong Y. M., Nishino N., Tanaka J. Cloning and sequence analysis of the arginine deiminase gene from Mycoplasma arginini. Mol Gen Genet. 1990 Mar;221(1):81–86. doi: 10.1007/BF00280371. [DOI] [PubMed] [Google Scholar]
  6. Muto A., Kawauchi Y., Yamao F., Osawa S. Preferential use of A- and U-rich codons for Mycoplasma capricolum ribosomal proteins S8 and L6. Nucleic Acids Res. 1984 Nov 12;12(21):8209–8217. doi: 10.1093/nar/12.21.8209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SCHIMKE R. T., BARILE M. F. Arginine breakdown in mammalian cell culture contaminated with pleuropneumonia-like organisms (PPLO). Exp Cell Res. 1963 May;30:593–596. doi: 10.1016/0014-4827(63)90337-9. [DOI] [PubMed] [Google Scholar]
  8. Sawada M., Muto A., Iwami M., Yamao F., Osawa S. Organization of ribosomal RNA genes in Mycoplasma capricolum. Mol Gen Genet. 1984;196(2):311–316. doi: 10.1007/BF00328064. [DOI] [PubMed] [Google Scholar]
  9. Sugimura K., Fukuda S., Wada Y., Taniai M., Suzuki M., Kimura T., Ohno T., Yamamoto K., Azuma I. Identification and purification of arginine deiminase that originated from Mycoplasma arginini. Infect Immun. 1990 Aug;58(8):2510–2515. doi: 10.1128/iai.58.8.2510-2515.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sugimura K., Ohno T., Fukuda S., Wada Y., Kimura T., Azuma I. Tumor growth inhibitory activity of a lymphocyte blastogenesis inhibitory factor. Cancer Res. 1990 Jan 15;50(2):345–349. [PubMed] [Google Scholar]
  11. Sugimura K., Tsukahara K., Ueda Y., Takeda K., Habu Y., Azuma I. Fast protein liquid chromatography of lymphocyte blastogenesis inhibitory factor produced by the human macrophage-like cell line U937. J Chromatogr. 1988 May 25;440:131–140. doi: 10.1016/s0021-9673(00)94517-5. [DOI] [PubMed] [Google Scholar]
  12. Sugimura K., Ueda Y., Takeda K., Fukuda S., Tsukahara K., Habu Y., Fujiwara H., Azuma I. A cytokine, lymphocyte blastogenesis inhibitory factor (LBIF), arrests mitogen-stimulated T lymphocytes at early G1 phase with no influence on interleukin 2 production and interleukin 2 receptor light chain expression. Eur J Immunol. 1989 Aug;19(8):1357–1364. doi: 10.1002/eji.1830190802. [DOI] [PubMed] [Google Scholar]
  13. Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2306–2309. doi: 10.1073/pnas.82.8.2306. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES