Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Dec;58(12):3966–3972. doi: 10.1128/iai.58.12.3966-3972.1990

Inhibition of cholera toxin binding to membrane receptors by pig gastric mucin-derived glycopeptides: differential effect depending on the ABO blood group antigenic determinants.

C G Monferran 1, G A Roth 1, F A Cumar 1
PMCID: PMC313763  PMID: 1701416

Abstract

The capacity of pig gastric mucin-derived glycopeptides to interfere with the binding of cholera toxin (CT) to membrane receptors was studied. Two types of glycopeptide preparations with or without human blood group A antigenic activity were assayed for comparison in a system in which the target for the toxin was rat erythrocyte ghosts. Blood group A-active glycopeptides (A+ glycopeptides) were more potent inhibitors for the toxin binding than those lacking group A activity (A- glycopeptides). The mean values of the 50% inhibitory dose revealed that the A+ glycopeptide preparations were 6.6-fold-more potent inhibitors than the A- ones (P less than 0.001). The inhibitory capacity of the different A+ glycopeptide preparations was not directly proportional to the group A antigenic titer. The A+ glycopeptides showed a higher capacity than the A- glycopeptides to interact with the toxin as revealed by CT-glycopeptide complex formation, which could be detected by Sephacryl S-400 chromatography. This result suggests that glycopeptide inhibition of CT binding to the erythrocyte ghosts is mediated by a competition between the GM1 receptors and the glycopeptides for the toxin. The differential effect between both types of glycoconjugates was independent of the way of measuring the amount of glycopeptides used (dry weight, carbohydrate or protein content). The existence in the gastrointestinal tract of mucins not carrying or carrying different ABO blood group determinants, which could behave as more or less potent inhibitors of CT binding to membrane receptors, may help to explain the relationship between ABO blood groups and severity of cholera.

Full text

PDF
3966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barua D., Paguio A. S. ABO blood groups and cholera. Ann Hum Biol. 1977 Sep;4(5):489–492. doi: 10.1080/03014467700002481. [DOI] [PubMed] [Google Scholar]
  2. Bennun F. R., Roth G. A., Monferran C. G., Cumar F. A. Binding of cholera toxin to pig intestinal mucosa glycosphingolipids: relationship with the ABO blood group system. Infect Immun. 1989 Mar;57(3):969–974. doi: 10.1128/iai.57.3.969-974.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black R. E., Levine M. M., Clements M. L., Hughes T., O'Donnell S. Association between O blood group and occurrence and severity of diarrhoea due to Escherichia coli. Trans R Soc Trop Med Hyg. 1987;81(1):120–123. doi: 10.1016/0035-9203(87)90302-6. [DOI] [PubMed] [Google Scholar]
  4. Chaudhuri A., DasAdhikary C. R. Possible role of blood-group secretory substances in the aetiology of cholera. Trans R Soc Trop Med Hyg. 1978;72(6):664–665. doi: 10.1016/0035-9203(78)90031-7. [DOI] [PubMed] [Google Scholar]
  5. Chaudhuri A., De S. Cholera and blood-groups. Lancet. 1977 Aug 20;2(8034):404–404. doi: 10.1016/s0140-6736(77)90332-4. [DOI] [PubMed] [Google Scholar]
  6. Clemens J. D., Sack D. A., Harris J. R., Chakraborty J., Khan M. R., Huda S., Ahmed F., Gomes J., Rao M. R., Svennerholm A. M. ABO blood groups and cholera: new observations on specificity of risk and modification of vaccine efficacy. J Infect Dis. 1989 Apr;159(4):770–773. doi: 10.1093/infdis/159.4.770. [DOI] [PubMed] [Google Scholar]
  7. Cuatrecasas P. Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry. 1973 Aug 28;12(18):3547–3558. doi: 10.1021/bi00742a031. [DOI] [PubMed] [Google Scholar]
  8. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein R. A., Burks M. F., Zupan A., Dallas W. S., Jacob C. O., Ludwig D. S. Antigenic determinants of the cholera/coli family of enterotoxins. Rev Infect Dis. 1987 Sep-Oct;9 (Suppl 5):S490–S502. doi: 10.1093/clinids/9.supplement_5.s490. [DOI] [PubMed] [Google Scholar]
  10. Fukuta S., Magnani J. L., Twiddy E. M., Holmes R. K., Ginsburg V. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun. 1988 Jul;56(7):1748–1753. doi: 10.1128/iai.56.7.1748-1753.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glass R. I., Holmgren J., Haley C. E., Khan M. R., Svennerholm A. M., Stoll B. J., Belayet Hossain K. M., Black R. E., Yunus M., Barua D. Predisposition for cholera of individuals with O blood group. Possible evolutionary significance. Am J Epidemiol. 1985 Jun;121(6):791–796. doi: 10.1093/oxfordjournals.aje.a114050. [DOI] [PubMed] [Google Scholar]
  12. Hanahan D. J., Ekholm J. E. The preparation of red cell ghosts (membranes). Methods Enzymol. 1974;31:168–172. doi: 10.1016/0076-6879(74)31018-x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lees M. B., Paxman S. Modification of the Lowry procedure for the analysis of proteolipid protein. Anal Biochem. 1972 May;47(1):184–192. doi: 10.1016/0003-2697(72)90291-6. [DOI] [PubMed] [Google Scholar]
  16. Leitch G. J. Cholera enterotoxin-induced mucus secretion and increase in the mucus blanket of the rabbit ileum in vivo. Infect Immun. 1988 Nov;56(11):2871–2875. doi: 10.1128/iai.56.11.2871-2875.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levine M. M., Nalin D. R., Rennels M. B., Hornick R. B., Sotman S., Van Blerk G., Hughes T. P., O'Donnell S., Barua D. Genetic susceptibility to cholera. Ann Hum Biol. 1979 Jul-Aug;6(4):369–374. doi: 10.1080/03014467900003751. [DOI] [PubMed] [Google Scholar]
  18. Magnani J. L., Smith D. F., Ginsburg V. Detection of gangliosides that bind cholera toxin: direct binding of 125I-labeled toxin to thin-layer chromatograms. Anal Biochem. 1980 Dec;109(2):399–402. doi: 10.1016/0003-2697(80)90667-3. [DOI] [PubMed] [Google Scholar]
  19. Mantle M., Allen A. A colorimetric assay for glycoproteins based on the periodic acid/Schiff stain [proceedings]. Biochem Soc Trans. 1978;6(3):607–609. doi: 10.1042/bst0060607. [DOI] [PubMed] [Google Scholar]
  20. McKibbin J. M. Fucolipids. J Lipid Res. 1978 Feb;19(2):131–147. [PubMed] [Google Scholar]
  21. Moss J., Vaughan M. Mechanism of action of choleragen and E. coli heat-labile enterotoxin: activation of adenylate cyclase by ADP-ribosylation. Mol Cell Biochem. 1981 Jul 7;37(2):75–90. doi: 10.1007/BF02354931. [DOI] [PubMed] [Google Scholar]
  22. Roth J. Methods for assessing immunologic and biologic properties of iodinated peptide hormones. Methods Enzymol. 1975;37:223–233. doi: 10.1016/s0076-6879(75)37018-3. [DOI] [PubMed] [Google Scholar]
  23. Sahyoun N., Shatila T., LeVine H., 3rd, Cuatrecasas P. Skeletal association of the cholera toxin receptor in rat erythrocytes. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1216–1222. doi: 10.1016/s0006-291x(81)80141-6. [DOI] [PubMed] [Google Scholar]
  24. Schengrund C. L., Ringler N. J. Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands. J Biol Chem. 1989 Aug 5;264(22):13233–13237. [PubMed] [Google Scholar]
  25. Sherr H. P., Mertens R. B. Cholera toxin-induced glycoprotein secretion in rabbit small intestine. Gastroenterology. 1979 Jul;77(1):18–25. [PubMed] [Google Scholar]
  26. Slomiany A., Jozwiak Z., Takagi A., Slomiany B. L. The role of covalently bound fatty acids in the degradation of human gastric mucus glycoprotein. Arch Biochem Biophys. 1984 Mar;229(2):560–567. doi: 10.1016/0003-9861(84)90188-7. [DOI] [PubMed] [Google Scholar]
  27. Slomiany B. L., Zdebska E., Slomiany A. Structural characterization of neutral oligosaccharides of human H+Leb+ gastric mucin. J Biol Chem. 1984 Mar 10;259(5):2863–2869. [PubMed] [Google Scholar]
  28. TREVELYAN W. E., HARRISON J. S. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochem J. 1952 Jan;50(3):298–303. doi: 10.1042/bj0500298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamamoto T., Nakazawa T., Miyata T., Kaji A., Yokota T. Evolution and structure of two ADP-ribosylation enterotoxins, Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett. 1984 Apr 24;169(2):241–246. doi: 10.1016/0014-5793(84)80326-9. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES