Abstract
Mangalo, R. (University of Illinois, Urbana) and J. T. Wachsman. Effect of 8-azaguanine on growth and viability of Bacillus megaterium. J. Bacteriol. 83:27–34. 1962.—The addition of 8-azaguanine to exponentially growing cells of Bacillus megaterium results in an inhibition of growth after a lag of approximately 30 min. However, 8-azaguanine-2-C14 is incorporated into the nucleic acids in a linear fashion without a detectable lag. The inhibitory action is reversed by purines and their derivatives, but not by uridine, thymidine, or cytidine. 8-Azaguanine is bactericidal, especially under conditions where growth (ribonucleic acid synthesis) is possible. Growth in the presence of a complete amino acid mixture, either before or during exposure to 8-azaguanine, increases the rate of killing. Chloramphenicol has little or no effect on the bactericidal action of the analogue.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARONSON A. I., SPIEGELMAN S. On the use of chloramphenicol-inhibited systems for investigating RNA and protein synthesis. Biochim Biophys Acta. 1958 Jul;29(1):214–215. doi: 10.1016/0006-3002(58)90170-7. [DOI] [PubMed] [Google Scholar]
- CHANTRENNE H., DEVREUX S. Effects of 8-azaguanine on the synthesis of protein and nucleic acids in Bacillus cereus. Nature. 1958 Jun 21;181(4625):1737–1738. doi: 10.1038/1811737a0. [DOI] [PubMed] [Google Scholar]
- CREASER E. H. The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem J. 1956 Nov;64(3):539–545. doi: 10.1042/bj0640539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEENER R., HAMERS-CASTERMAN C., MAIRESSE N. On the inhibition of phage production by 2-thiouracil and 8-azaguanine in an induced lysogenic Bacillus megaterium. Biochim Biophys Acta. 1959 Sep;35:166–179. doi: 10.1016/0006-3002(59)90345-2. [DOI] [PubMed] [Google Scholar]
- MANDEL H. G. Incorporation of 8-azaguanine and growth inhibition Bacillus cereus. J Biol Chem. 1957 Mar;225(1):137–150. [PubMed] [Google Scholar]
- NEIDHARDT F. C., GROS F. Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin. Biochim Biophys Acta. 1957 Sep;25(3):513–520. doi: 10.1016/0006-3002(57)90521-8. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PAIGEN K., PRESTIDGE L. S. A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim Biophys Acta. 1957 Jan;23(1):162–173. doi: 10.1016/0006-3002(57)90299-8. [DOI] [PubMed] [Google Scholar]
- SMITH J. D., MATTHEWS R. E. The metabolism of 8-azapurines. Biochem J. 1957 Jun;66(2):323–333. doi: 10.1042/bj0660323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasz A., Borek E. THE MECHANISM OF BACTERIAL FRAGILITY PRODUCED BY 5-FLUOROURACIL: THE ACCUMULATION OF CELL WALL PRECURSORS. Proc Natl Acad Sci U S A. 1960 Mar;46(3):324–327. doi: 10.1073/pnas.46.3.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WACHSMAN J. T., MANGALO R. Use of 8-azaguanine for the isolation of auxotrophic mutants of Bacillus megaterium. J Bacteriol. 1962 Jan;83:35–37. doi: 10.1128/jb.83.1.35-37.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
