Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1962 Jan;83(1):169–174. doi: 10.1128/jb.83.1.169-174.1962

UTILIZATION OF S-ADENOSYLMETHIONINE BY MICROORGANISMS1

Stanley K Shapiro a
PMCID: PMC314803  PMID: 13911314

Abstract

Shapiro, Stanley K. (Argonne National Laboratory, Argonne, Ill.). Utilization of S-adenosylmethionine by microorganisms. J. Bacteriol. 83:169–174. 1962.—Two types of mutants of Aerobacter aerogenes that utilize S-adenosylmethionine for growth are described. One type also responds to methionine, 5′methylthioadenosine, or a combination of homocysteine and S-methylmethionine. The second type of mutant responds only to S-adenosylmethionine or a combination of adenine and S-ribosylmethionine. The most common type of methionine mutant is unable to utilize S-adenosylmethionine for growth. The mutants are able to utilize the compounds that support growth as the sole source of sulfur. S-Adenosylhomocysteine is not utilized for growth by any of the mutants of A. aerogenes described here. There are no significant differences between the mutants and the wild type in the enzymatic decomposition of S-adenosylmethionine or in the activity of the homocysteine transmethylases. S-Adenosylmethionine does not replace the methionine requirement of the lactic acid bacteria, although Lactobacillus arabinosus shows half-maximal growth with the sulfonium compound and homocysteine. S-Adenosylhomocysteine is not utilized for growth by these organisms.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. PARKS L. W., SCHLENK F. The stability and hydrolysis of S-adenosylmethionine; isolation of S-ribosylmethionine. J Biol Chem. 1958 Jan;230(1):295–305. [PubMed] [Google Scholar]
  4. SCHLENK F., DAINKO J. L., STANFORD S. M. Improved procedure for the isolation of S-adenosylmethionine and S-adenosylethionine. Arch Biochem Biophys. 1959 Jul;83(1):28–34. doi: 10.1016/0003-9861(59)90006-2. [DOI] [PubMed] [Google Scholar]
  5. SHAPIRO S. K. Biosynthesis of methionine from homocysteine and s-methylmethionine in bacteria. J Bacteriol. 1956 Dec;72(6):730–735. doi: 10.1128/jb.72.6.730-735.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SHAPIRO S. K., MATHER A. N. The enzymatic decomposition of S-adenosyl-L-methionine. J Biol Chem. 1958 Sep;233(3):631–633. [PubMed] [Google Scholar]
  7. SHAPIRO S. K., YPHANTIS D. A. Assay of S-methylmethionine and S-adenosylmethionine homocysteine transmethylases. Biochim Biophys Acta. 1959 Nov;36:241–244. doi: 10.1016/0006-3002(59)90089-7. [DOI] [PubMed] [Google Scholar]
  8. TABOR H., ROSENTHAL S. M., TABOR C. W. The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem. 1958 Oct;233(4):907–914. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES