Abstract
Bragg, P. D. (University of British Columbia, Vancouver, British Columbia, Canada), and W. J. Polglase. Formation of valine by streptomycin-dependent Escherichia coli. J. Bacteriol. 88:1006–1009. 1964.—The primary extracellular products of the aerobic catabolism of glucose in streptomycin-dependent Escherichia coli were found to be carbon dioxide and acetate, the ratio of these two products being dependent on the rate of aeration but independent of antibiotic. Secondary extracellular products of dependent E. coli were valine and lactic acid; the former was produced in the presence of antibiotic under aerobic conditions, and the latter metabolite was formed under conditions of either antibiotic depletion or oxygen deprivation. The fact that the same products were formed when either streptomycin or oxygen was limiting supports the hypothesis that the antibiotic is required to complete hydrogen transport in dependent E. coli. The formation of valine appears to represent an anomalous pathway of aerobic glucose catabolism, whereby a neutral, relatively highly reduced end product is excreted.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BODE F. Eine Vereinfachung und Verbesserung der Methode zur quantitativen Bestimmung von Aminosäuren und Peptiden mittels des Ninhydrin-Kupferkomplexes. Biochem Z. 1955;326(6):433–435. [PubMed] [Google Scholar]
- BRAGG P. D., POLGLASE W. J. EFFECT OF DIHYDROSTREPTOMYCIN ON TETRAZOLIUM DYE REDUCTION IN ESCHERICHIA COLI. J Bacteriol. 1963 Apr;85:795–800. doi: 10.1128/jb.85.4.795-800.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRAGG P. D., POLGLASE W. J. ELECTRON-TRANSPORT COMPONENTS OF STREPTOMYCIN-DEPENDENT ESCHERICHIA COLI. J Bacteriol. 1963 Sep;86:544–547. doi: 10.1128/jb.86.3.544-547.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRAGG P. D., POLGLASE W. J. Extracellular metabolites of streptomycin mutants of Escherichia coli. J Bacteriol. 1962 Aug;84:370–374. doi: 10.1128/jb.84.2.370-374.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EL HAWARY M. F. S., THOMPSON R. H. S. Separation and estimation of blood keto acids by paper chromatography. Biochem J. 1953 Feb;53(3):340–347. doi: 10.1042/bj0530340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRANT D. J., HINSHELWOOD C. STUDIES OF THE ENZYME ACTIVITY OF BACT. LACTIS AEROGENES. (AEROBACTER AEROGENES). II. THE EFFECTS OF VARIOUS ADAPTATIONS ON THE ENZYME BALANCE. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:42–68. doi: 10.1098/rspb.1964.0029. [DOI] [PubMed] [Google Scholar]
- ISHERWOOD F. A., HANES C. S. Separation and estimation of organic acids on paper chromatograms. Biochem J. 1953 Dec;55(5):824–830. doi: 10.1042/bj0550824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIGHTBOWN J. W. Metabolic processes underlying streptomycin resistance. G Ital Chemioter. 1957 Jan-Jun;4(1-2):22–32. [PubMed] [Google Scholar]
- MONTGOMERY R. Determination glycogen. Arch Biochem Biophys. 1957 Apr;67(2):378–386. doi: 10.1016/0003-9861(57)90292-8. [DOI] [PubMed] [Google Scholar]
- TIRUNARAYANAN M. O., VISCHER W. A., RENNER U. Streptomycin and amino acid metabolism of bacteria. Antibiot Chemother (Northfield) 1962 Feb;12:117–122. [PubMed] [Google Scholar]