Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Feb;91(2):514–516. doi: 10.1128/jb.91.2.514-516.1966

Analyses of Deoxyribonucleic Acid of Neisseria caviae and other Neisseria

Elizabeth H LaMacchia 1, Michael J Pelczar Jr 1
PMCID: PMC314889  PMID: 5935338

Abstract

LaMacchia, Elizabeth H. (University of Maryland, College Park), and Michael J. Pelczar, Jr. Analyses of deoxyribonucleic acid of Neisseria caviae and other Neisseria. J. Bacteriol. 91:514–516. 1966.—The base composition of deoxyribonucleate preparations extracted from 11 strains of Neisseria caviae, expressed in terms of mole per cent guanine plus cytosine ranged from 47.7 to 50.4, with an average of 49.2. This compared closely with the values obtained for DNA from two strains of N. perflava, which were 49.2 and 50.5%, as well as with published values for most other Neisseria species. The values obtained for five strains of N. catarrhalis, however, ranged from 42.3 to 45.7%. These results suggest that N. caviae may be more closely related to Neisseria spp. other than N. catarrhalis.

Full text

PDF
514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CATLIN B. W., CUNNINGHAM L. S. GENETIC TRANSFORMATION OF NEISSERIA CATARRHALIS BY DEOXYRIBONUCLEATE PREPARATIONS HAVING DIFFERENT AVERAGE BASE COMPOSITIONS. J Gen Microbiol. 1964 Dec;37:341–352. doi: 10.1099/00221287-37-3-341. [DOI] [PubMed] [Google Scholar]
  2. CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
  3. CATLIN B. W. Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime. J Bacteriol. 1960 Apr;79:579–590. doi: 10.1128/jb.79.4.579-590.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  5. MARMUR J., FALKOW S., MANDEL M. NEW APPROACHES TO BACTERIAL TAXONOMY. Annu Rev Microbiol. 1963;17:329–372. doi: 10.1146/annurev.mi.17.100163.001553. [DOI] [PubMed] [Google Scholar]
  6. MARSHAK A., VOGEL H. J. Microdetermination of purines and pyrimidines in biological materials. J Biol Chem. 1951 Apr;189(2):597–605. [PubMed] [Google Scholar]
  7. PELCZAR M. J., Jr, HAJEK J. P., FABER J. E., Jr Characterization of Neisseria isolated from the pharyngeal region of guinea pigs. J Infect Dis. 1949 Nov-Dec;85(3):239–242. doi: 10.1093/infdis/85.3.239. [DOI] [PubMed] [Google Scholar]
  8. PELCZAR M. J., Jr Neisseria caviae nov spec. J Bacteriol. 1953 Jun;65(6):744–744. doi: 10.1128/jb.65.6.744-744.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES