Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Feb;91(2):517–523. doi: 10.1128/jb.91.2.517-523.1966

Dissociation of Cellular Functions in Bacillus cereus by 5-Fluorouracil

Melvin Reich a,1, H George Mandel a
PMCID: PMC314890  PMID: 4956778

Abstract

Reich, Melvin (The George Washington University School of Medicine, Washington, D.C.), and H. George Mandel. Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil. J. Bacteriol. 91:517–523. 1966.—5-Fluorouracil (FU) produced a marked inhibition of growth and deoxyribonucleic acid (DNA) synthesis in Bacillus cereus 569H. Protein and ribonucleic acid (RNA) synthesis were not specifically inhibited, and proceeded at the rate of turbidometric increase of the cells. Cell-wall synthesis, respiration, and penicillinase production continued in the presence of FU at essentially the control rate. The addition of equimolar concentrations of uracil and FU prevented growth inhibition but did not restore DNA synthesis. The addition of thymidine with FU did not relieve growth inhibition but did restore the DNA content to normal. Thymidine supplementation also increased the quantity of FU, but not uracil, incorporated into RNA and the acid-soluble fraction. The data indicate that inhibition of growth can be dissociated from inhibition of DNA synthesis and that more DNA is present in normal cells than is needed for growth and reproduction.

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., LITTAU V. C., MIRSKY A. E. On the role of of histones in regulation ribonucleic acid synthesis in the cell nucleus. Proc Natl Acad Sci U S A. 1963 Mar 15;49:414–421. doi: 10.1073/pnas.49.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALPEN E. L., MANDEL H. G. A rapid assay method for tritium in bacterial cells. Biochim Biophys Acta. 1960 Sep 23;43:317–321. doi: 10.1016/0006-3002(60)90442-x. [DOI] [PubMed] [Google Scholar]
  3. ARONSON A. I. The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim Biophys Acta. 1961 Apr 29;49:98–107. doi: 10.1016/0006-3002(61)90873-3. [DOI] [PubMed] [Google Scholar]
  4. BODMER W. F., GRETHER S. UPTAKE AND INCORPORATION OF THYMINE, THYMIDINE, URACIL, URIDINE, AND 5-FLUOROURACIL INTO THE NUCLEIC ACIDS OF BACILLUS SUBTILIS. J Bacteriol. 1965 Apr;89:1011–1014. doi: 10.1128/jb.89.4.1011-1014.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BROCKMAN R. W., DAVIS J. M., STUTTS P. Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim Biophys Acta. 1960 May 6;40:22–32. doi: 10.1016/0006-3002(60)91311-1. [DOI] [PubMed] [Google Scholar]
  6. BURTON K. The relation between the synthesis of deoxyribonucleic acid and the synthesis of protein in the multiplication of bacteriophage T2. Biochem J. 1955 Nov;61(3):473–483. doi: 10.1042/bj0610473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOROWITZ J., SAUKKONEN J. J., CHARGAFF E. Effects of fluoropyrimidines on the synthesis of bacterial proteins and nucleic acids. J Biol Chem. 1960 Nov;235:3266–3272. [PubMed] [Google Scholar]
  9. KEMPNER E. S., MILLER J. H. Alteration of carbon metabolism by a base analog. Biophys J. 1962 Jul;2:327–337. doi: 10.1016/s0006-3495(62)86858-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LITTMAN M. L., MIWATANI T. Reversal of toxicity of 5-fluorouracil and 5-fluorodeoxyuridine for Candida albicans by pyridoxine and pyridoxamine. Nature. 1961 Dec 23;192:1155–1159. doi: 10.1038/1921155a0. [DOI] [PubMed] [Google Scholar]
  11. MALEY G. F., MALEY F. Nucleotide interconversions. VIII. Thymidine-sparing effect on the utilization of de-cytidine by chick-embryo mince. Biochim Biophys Acta. 1963 Feb 26;68:293–301. doi: 10.1016/0006-3002(63)90145-8. [DOI] [PubMed] [Google Scholar]
  12. MANDEL H. G. Further studies on the modifications of nucleic acid synthesis of B. cereus by 8-azaguanine. J Pharmacol Exp Ther. 1961 Aug;133:141–150. [PubMed] [Google Scholar]
  13. MANDEL H. G., MARKHAM R. The effects of 8-azaguanine on the biosynthesis of ribonucleic acid in Bacillus cereus. Biochem J. 1958 Jun;69(2):297–306. doi: 10.1042/bj0690297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MUKHERJEE K. L., HEIDELBERGER C. Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. J Biol Chem. 1960 Feb;235:433–437. [PubMed] [Google Scholar]
  15. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  16. POLLOCK M. R. Penicillinase adaptation in B. cereus; adaptive enzyme formation in the absence of free substrate. Br J Exp Pathol. 1950 Dec;31(6):739–753. [PMC free article] [PubMed] [Google Scholar]
  17. REICH M., MANDEL H. G. URACIL: FAILURE TO RESTORE DNA SYNTHESIS WHILE RELIEVING 5-FLUOROURACIL-INDUCED INHIBITION. Science. 1964 Jul 17;145(3629):276–277. doi: 10.1126/science.145.3629.276. [DOI] [PubMed] [Google Scholar]
  18. ROGERS H. J., PERKINS H. R. 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus. Biochem J. 1960 Dec;77:448–459. doi: 10.1042/bj0770448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROODYN D. B., MANDEL H. G. A simple membrane fractionation method for determining the distribution of radioactivity in chemical fractions of Bacillus cereus. Biochim Biophys Acta. 1960 Jun 17;41:80–88. doi: 10.1016/0006-3002(60)90371-1. [DOI] [PubMed] [Google Scholar]
  20. ROODYN D. B., MANDEL H. G. The differential effect of 8-azaguanine on cell wall and protoplasmic protein synthesis in Bacillus cereus. J Biol Chem. 1960 Jul;235:2036–2044. [PubMed] [Google Scholar]
  21. SELLS B. H. The effect of thymidine upon the incorporation of uracil into Bacillus cereus. Biochim Biophys Acta. 1960 Jun 3;40:548–549. doi: 10.1016/0006-3002(60)91403-7. [DOI] [PubMed] [Google Scholar]
  22. TOMASZ A., BOREK E. The mechanism of an osmotic instability induced in E. coli K-12 by 5-fluorouracil. Biochemistry. 1962 Jul;1:543–552. doi: 10.1021/bi00910a001. [DOI] [PubMed] [Google Scholar]
  23. VOLKIN E., COHN W. E. Estimation of nucleic acids. Methods Biochem Anal. 1954;1:287–305. doi: 10.1002/9780470110171.ch11. [DOI] [PubMed] [Google Scholar]
  24. Wachsman J. T., Kemp S., Hogg L. Comparative effects of 5-fluorouracil on strains of Bacillus megaterium. J Bacteriol. 1964 May;87(5):1011–1018. doi: 10.1128/jb.87.5.1011-1018.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES