Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Feb;91(2):562–569. doi: 10.1128/jb.91.2.562-569.1966

Dipicolinic Acid Synthesis in Penicillium citreo-viride1

Phillip H Hodson a,2, J W Foster a
PMCID: PMC314895  PMID: 5883092

Abstract

Hodson, Phillip H. (University of Texas, Austin), and J. W. Foster. Dipicolinic acid synthesis in Penicillium citreo-viride. J. Bacteriol. 91:562–569. 1966.—Dipicolinic acid (DPA) accumulation in culture filtrates of the mold Penicillium citreo-viride was studied in surface and submerged cultures. Good DPA yields were obtained in suspensions of washed, submerged mycelium in the presence of a carbon and a nitrogen source but in the absence of other minerals essential for growth. Fumaric acid was the only other acid formed in significant amounts. Glucose and glycerol were superior to various salts of organic acids as carbon sources, and certain amino acids were excellent nitrogen sources. l-Leucine, l-norvaline, l-tyrosine, and l-histidine were superior to urea, NH4Cl, or NaNO3 as nitrogen precursors for DPA production. d-Norvaline was useless for DPA production. Glycerol-2-C14 and -1-C14, C14O2, and l-leucine-C14, l-tyrosine-C14, and l-histidine-C14 were tested as precursors in conjunction with suitable carbon and nitrogen sources. The DPA was decarboxylated chemically, and the distribution of C14 was determined in the pyridine-C and in the carboxyl-C. The data are consistent with Martin and Foster's suggestion for bacteria that the DPA molecule is formed by a condensation of C3 plus C4 precursors, the resulting 2-keto, 6-aminopimelic acid derivate undergoing ring closure to form a heterocyclic precursor of DPA. The C14O2 experiments indicate that oxaloacetate is formed by β-carboxylation of pyruvate, this in turn probably becoming aspartic acid β-semialdehyde, the C4 compound which condenses with a second pyruvate. The enhancement of DPA formation by l-norvaline, l-leucine, and l-histidine is not ascribable to their functioning either as a source of nitrogen or carbon. l-Tyrosine, in a glycerol medium, contributed nearly 40% of the DPA carbon. The mechanism of biosynthesis of C7 straight-chain and cyclic compounds is discussed.

Full text

PDF
562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELBERG E. A., UMBARGER H. E. Isoleucine and valine metabolism in Escherichia coli. V. alpha-Ketoisovaleric acid accumulation. J Biol Chem. 1953 Nov;205(1):475–482. [PubMed] [Google Scholar]
  2. BROWNLOW W. J., WESSMAN G. E. Nutrition of Pasteurella pestis in chemically defined media at temperatures of 36 to 38 C. J Bacteriol. 1960 Feb;79:299–304. doi: 10.1128/jb.79.2.299-304.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DITTMER K. The structural bases of some amino acid antagonists and their microbiological properties. Ann N Y Acad Sci. 1950 Jul 7;52(8):1274–1301. doi: 10.1111/j.1749-6632.1950.tb54030.x. [DOI] [PubMed] [Google Scholar]
  4. FOSTER J. W. Morphogenesis in bacteria: some aspects of spore formation. Q Rev Biol. 1956 Jun;31(2):102–118. doi: 10.1086/401259. [DOI] [PubMed] [Google Scholar]
  5. GILVARG C. Biosynthesis of diaminopimelic acid. Fed Proc. 1960 Dec;19:948–952. [PubMed] [Google Scholar]
  6. GILVARG C. N-Succinyl-alpha-amino-6-ketopimelic acid. J Biol Chem. 1961 May;236:1429–1431. [PubMed] [Google Scholar]
  7. GOLDSCHMIDT E. P., KOFFLER H., YALL E. Biochemistry of filamentous fungi. IV. The significance of the tricarboxylic acid cycle in the oxidation of acetate by Penicillium chrysogenum. J Bacteriol. 1956 Oct;72(4):436–446. doi: 10.1128/jb.72.4.436-446.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GRULA E. A. Cell division in a species of Erwinia. I. Inhibition of division by D-amino acids. J Bacteriol. 1960 Sep;80:375–385. doi: 10.1128/jb.80.3.375-385.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  10. KINDLER S. H., GILVARG C. N-Succinyl-L-2,6-diaminopimelic acid deacylase. J Biol Chem. 1960 Dec;235:3532–3535. [PubMed] [Google Scholar]
  11. Kanie M., Fujimoto S., Foster J. W. Chemical degradation of dipicolinic acid-C14 and its application in biosynthesis by Penicillium citreo-viride. J Bacteriol. 1966 Feb;91(2):570–577. doi: 10.1128/jb.91.2.570-577.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARTIN H. H., FOSTER J. W. Biosynthesis of dipicolinic acid in Bacillus megaterium. J Bacteriol. 1958 Aug;76(2):167–178. doi: 10.1128/jb.76.2.167-178.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MEISTER A. The alpha-keto analogues of arginine, ornithine, and lysine. J Biol Chem. 1954 Feb;206(2):577–585. [PubMed] [Google Scholar]
  14. MOKRASCH L. C. Analysis of hexose phosphates and sugar mixtures with the anthrone reagent. J Biol Chem. 1954 May;208(1):55–59. [PubMed] [Google Scholar]
  15. NOBLE E. P., REED D. R., WANG C. H. Utilization of acetate, pyruvate, and CO2 by Penicillium digitatum. Can J Microbiol. 1958 Oct;4(5):469–476. doi: 10.1139/m58-050. [DOI] [PubMed] [Google Scholar]
  16. ORTEGA M. V., BROWN G. M. Precursors of nicotinic acid in Escherichia coli. J Biol Chem. 1960 Oct;235:2939–2945. [PubMed] [Google Scholar]
  17. PERRY J. J., FOSTER J. W. Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. J Bacteriol. 1955 Mar;69(3):337–346. doi: 10.1128/jb.69.3.337-346.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PETERKOFSKY B., GILVARG C. N-Succinyl-L-diaminopimelic-glutamic transaminase. J Biol Chem. 1961 May;236:1432–1438. [PubMed] [Google Scholar]
  19. POWELL J. F., STRANGE R. E. Synthesis of dipicolinic acid from 2,6-diketopimelic acid. Nature. 1959 Sep 19;184:878–880. doi: 10.1038/184878a0. [DOI] [PubMed] [Google Scholar]
  20. RAVEL J. M., McCORD T. J., SKINNER C. G., SHIVE W. S-Carbamyl-L-cysteine, an inhibitory amino acid analogue. J Biol Chem. 1958 May;232(1):159–168. [PubMed] [Google Scholar]
  21. SHIVE W. The utilization of antimetabolites in the study of biochemical processes in living organisms. Ann N Y Acad Sci. 1950 Jul 7;52(8):1212–1234. doi: 10.1111/j.1749-6632.1950.tb54026.x. [DOI] [PubMed] [Google Scholar]
  22. STOKES J. L., BAYNE H. G. Growth-factor-dependent strains of Salmonellae. J Bacteriol. 1958 Oct;76(4):417–421. doi: 10.1128/jb.76.4.417-421.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TANENBAUM S. W., KANEKO K. BIOSYNTHESIS OF DIPICOLINIC ACID AND OF LYSINE IN PENICILLIUM CITREO-VIRIDE. Biochemistry. 1964 Sep;3:1314–1322. doi: 10.1021/bi00897a022. [DOI] [PubMed] [Google Scholar]
  24. UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
  25. WALLER G. R., HENDERSON L. M. Biosynthesis of the pyridine ring of ricinine. J Biol Chem. 1961 Apr;236:1186–1191. [PubMed] [Google Scholar]
  26. WORK E. The action of L-amino acid oxidases on the optical isomers of alpha, epsilon-diaminopimelic acid. Biochim Biophys Acta. 1955 Jul;17(3):410–415. doi: 10.1016/0006-3002(55)90390-5. [DOI] [PubMed] [Google Scholar]
  27. WORK E. The isolation of alpha epsilon-Diaminopimelic acid from Corynebacterium diphtheriae and Mycobacterium tuberculosis. Biochem J. 1951 Jun;49(1):17–23. doi: 10.1042/bj0490017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WORMSER E. H., PARDEE A. B. Regulation of threonine biosynthesis in Escherichia coli. Arch Biochem Biophys. 1958 Dec;78(2):416–432. doi: 10.1016/0003-9861(58)90367-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES