Abstract
Hoch, J. A. (University of Illinois, Urbana), and R. D. DeMoss. Physiological role of tryptophanase in control of tryptophan biosynthesis in Bacillus alvei. J. Bacteriol. 91:667–672. 1966.—Indole excretion occurred early in the exponential growth phase, and derived mainly from biosynthetic intermediates of tryptophan. Tryptophan cleavage by tryptophanase contributed about 1.5% of the indole excreted. In the presence of exogenous tryptophan (5 to 10 μg/ml), excretion of early indole was not observed. Experiments with isotopically labeled indole and tryptophan showed that a low rate of endogenous tryptophan biosynthesis occurred constantly during growth. Both exogenously and endogenously supplied tryptophan were degraded by tryptophanase. As a consequence, the intracellular tryptophan concentration appeared to be maintained at a constant low level. It was suggested that the action of tryptophanase is an example of an enzymatic mechanism which controls the level of a specific metabolite pool.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COX G. B., GIBSON F. BIOSYNTHESIS OF VITAMIN K AND UBIQUINONE. RELATION TO THE SHIKIMIC ACID PATHWAY IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Oct 9;93:204–206. doi: 10.1016/0304-4165(64)90285-5. [DOI] [PubMed] [Google Scholar]
- FRANK L. H., DEMOSS R. D. Specific enzymic method for the estimation of L-tryptophan. Arch Biochem Biophys. 1957 Apr;67(2):387–397. doi: 10.1016/0003-9861(57)90293-x. [DOI] [PubMed] [Google Scholar]
- FREUNDLICH M., LICHSTEIN H. C. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J Bacteriol. 1962 Nov;84:979–987. doi: 10.1128/jb.84.5.979-987.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoch J. A., Demoss R. D. Physiological Effects of a Constitutive Tryptophanase in Bacillus alvei. J Bacteriol. 1965 Sep;90(3):604–610. doi: 10.1128/jb.90.3.604-610.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. Direct evidence for a trytophan-anthranilic acid cycle in Neurospora. Biochim Biophys Acta. 1963 Jun 4;71:632–642. doi: 10.1016/0006-3002(63)91136-3. [DOI] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. PHYSIOLOGICAL CHANNELING OF TRYPTOPHAN IN NEUROSPORA CRASSA. Biochim Biophys Acta. 1964 Apr 4;86:91–99. doi: 10.1016/0304-4165(64)90162-x. [DOI] [PubMed] [Google Scholar]
- MORGAN P. N., GIBSON M. I., GIBSON F. THE CONVERSION OF SHIKIMIC ACID INTO CERTAIN AROMATIC COMPOUNDS BY CELL-FREE EXTRACTS OF AEROBACTER AEROGENES AND ESCHERICHIA COLI. Biochem J. 1963 Nov;89:229–239. doi: 10.1042/bj0890229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matchett W. H. The utilization of tryptophan by neurospora. Biochim Biophys Acta. 1965 Sep 13;107(2):222–231. doi: 10.1016/0304-4165(65)90129-7. [DOI] [PubMed] [Google Scholar]
- NEWTON W. A., SNELL E. E. CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. Proc Natl Acad Sci U S A. 1964 Mar;51:382–389. doi: 10.1073/pnas.51.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWTON W. A., SNELL E. E. FORMATION AND INTERRELATIONSHIPS OF TRYPTOPHANASE AND TRYPTOPHAN SYNTHETASES IN ESCHERICHIA COLI. J Bacteriol. 1965 Feb;89:355–364. doi: 10.1128/jb.89.2.355-364.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YANOFSKY C. The tryptophan synthetase system. Bacteriol Rev. 1960 Jun;24(2):221–245. doi: 10.1128/br.24.2.221-245.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]