Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Jan;93(1):71–79. doi: 10.1128/jb.93.1.71-79.1967

Mode of Action of Novobiocin in Escherichia coli

David H Smith a,1, Bernard D Davis a
PMCID: PMC314970  PMID: 5335903

Abstract

The mechanism of action of novobiocin was studied in various strains of Escherichia coli. In all strains tested except mutants of strain ML, the drug immediately and reversibly inhibited cell division, and later slowed cell growth. The previously described impairment of membrane integrity, degradation of ribonucleic acid (RNA), and associated bactericidal effect were found to be peculiar to ML strains. The earliest and greatest effect in all strains was an inhibition of deoxyribonucleic acid (DNA) synthesis; RNA synthesis was inhibited to a lesser extent, and cell wall and protein synthesis were affected later. The inhibition of nucleic acid synthesis was accompanied by an approximately threefold accumulation of all eight nucleoside triphosphates. Since novobiocin does not inhibit nucleoside triphosphate synthesis, degrade DNA, or immediately affect energy metabolism, it must inhibit the synthesis of DNA and RNA by direct action on template-polymerase complexes.

Full text

PDF
71

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J. S., MATSUHASHI M., HASKIN M. A., STROMINGER J. L. LIPID-PHOSPHOACETYLMURAMYL-PENTAPEPTIDE AND LIPID-PHOSPHODISACCHARIDE-PENTAPEPTIDE: PRESUMED MEMBRANE TRANSPORT INTERMEDIATES IN CELL WALL SYNTHESIS. Proc Natl Acad Sci U S A. 1965 Apr;53:881–889. doi: 10.1073/pnas.53.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROCK T. D., BROCK M. L. Effect of novobiocin on permeability of Escherichia coli. Arch Biochem Biophys. 1959 Nov;85:176–185. doi: 10.1016/0003-9861(59)90461-8. [DOI] [PubMed] [Google Scholar]
  3. BROCK T. D. Effects of magnesium ion deficiency on Escherichia coli and possible relation to the mode of action of novobiocin. J Bacteriol. 1962 Oct;84:679–682. doi: 10.1128/jb.84.4.679-682.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BROCK T. D. Magnesium binding as an explanation of the mode of action of novobiocin. Science. 1962 Apr 27;136(3513):316–317. doi: 10.1126/science.136.3513.316. [DOI] [PubMed] [Google Scholar]
  5. BROCK T. D. Studies on the mode of action of novobiocin. J Bacteriol. 1956 Sep;72(3):320–323. doi: 10.1128/jb.72.3.320-323.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BURGER M. M., GLASER L. THE SYNTHESIS OF TEICHOIC ACIDS. I. POLYGLYCEROPHOSPHATE. J Biol Chem. 1964 Oct;239:3168–3177. [PubMed] [Google Scholar]
  7. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  8. DUBIN D. T., HANCOCK R., DAVIS B. D. THE SEQUENCE OF SOME EFFECTS OF STREPTOMYCIN IN ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Aug 13;74:476–489. doi: 10.1016/0006-3002(63)91390-8. [DOI] [PubMed] [Google Scholar]
  9. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  10. GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
  11. GLASER L. THE SYNTHESIS OF TEICHOIC ACIDS. II. POLYRIBITOL PHOSPHATE. J Biol Chem. 1964 Oct;239:3178–3186. [PubMed] [Google Scholar]
  12. Hancock R., Fitz-James P. C. Some differences in the action of penicillin, bacitracin, and vancomycin on Bacillus megaterium. J Bacteriol. 1964 May;87(5):1044–1050. doi: 10.1128/jb.87.5.1044-1050.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larsson A., Reichard P. Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coli B. J Biol Chem. 1966 Jun 10;241(11):2540–2549. [PubMed] [Google Scholar]
  14. Leive L., Davis B. D. The transport of diaminopimelate and cystine in Escherichia coli. J Biol Chem. 1965 Nov;240(11):4362–4369. [PubMed] [Google Scholar]
  15. Matsuhashi M., Dietrich C. P., Strominger J. L. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci U S A. 1965 Aug;54(2):587–594. doi: 10.1073/pnas.54.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neuhard J., Munch-Petersen A. Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. II. Changes in the amounts of deoxycytidine triphosphate and deoxyadenosine triphosphate in Escherichia coli 15 T-A-U. Biochim Biophys Acta. 1966 Jan 18;114(1):61–71. doi: 10.1016/0005-2787(66)90253-x. [DOI] [PubMed] [Google Scholar]
  17. Neuhard J., Randerath E., Randerath K. Ion-exchange thin-layer chromatography. 13. Resolution of complex nucleoside triphosphate mixtures. Anal Biochem. 1965 Nov;13(2):211–222. doi: 10.1016/0003-2697(65)90191-0. [DOI] [PubMed] [Google Scholar]
  18. SHOCKMAN G. D., LAMPEN J. O. Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J Bacteriol. 1962 Sep;84:508–512. doi: 10.1128/jb.84.3.508-512.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STROMINGER J. L., THRENN R. H. The optical configuration of the alanine residues in a uridine nucleotide and in the cell wall of Staphylococcus aureus. Biochim Biophys Acta. 1959 May;33(1):280–281. doi: 10.1016/0006-3002(59)90538-4. [DOI] [PubMed] [Google Scholar]
  20. WISHNOW R. M., STROMINGER J. L., BIRGE C. H., THRENN R. H. BIOCHEMICAL EFFECTS OF NOVOBIOCIN ON STAPHYLOCOCCUS AUREUS. J Bacteriol. 1965 Apr;89:1117–1123. doi: 10.1128/jb.89.4.1117-1123.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES