Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Jan;93(1):357–366. doi: 10.1128/jb.93.1.357-366.1967

Magnesium Starvation of Aerobacter aerogenes III. Protein Metabolism

Sally L Marchesi a,1, David Kennell a
PMCID: PMC315008  PMID: 6020412

Abstract

The metabolism of the ribosomal and soluble protein components of Aerobacter aerogenes was examined during its incubation in a Mg++-deficient medium. Bacteria were exposed to leucine-H3 during the exponential growth period preceding Mg++ starvation, and extracts were prepared after intervals of starvation and were centrifuged through gradients of sucrose to separate ribosomal from soluble proteins. Ribosomal proteins synthesized during the preceding exponential growth were slowly lost from the ribosomes; after 8 hr of starvation, few, if any, sedimented with ribosomes. Losses of total protein, together with the known rate of ribosome decay during Mg++ starvation, suggested that these ribosomal proteins are ultimately degraded to acid-soluble products and account for all protein lost by the starving cells. These conclusions were supported by studies of Mg++ starvation in a uracil-requiring strain of A. aerogenes: during uracil starvation a smaller fraction of the proteins synthesized were ribosomal, and the fraction of protein which subsequently decayed during Mg++ starvation was correspondingly less. During recovery from Mg++ starvation, proteins, lost from disintegrated ribosomes, were not detectably reutilized into new particles even before their degradation to acid-soluble products was complete. Synthesis of soluble proteins continued for more than 24 hr of starvation at a rate per milliliter close to 45% of the instantaneous rate per milliliter of the exponentially growing bacteria at the time Mg++ was removed. This value agreed with that found previously for synthetic rates of deoxyribonucleic acid, transfer ribonucleic acid, and ribosomal ribonucleic acid during starvation relative to rates during exponential growth.

Full text

PDF
357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCARTHY B. J., ROBERTS R. B. The synthesis of ribosomes in E. coli. IV. The synthesis of ribosomal protein and the assembly of ribosomes. Biophys J. 1962 Jan;2:83–93. doi: 10.1016/s0006-3495(62)86842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hosokawa K., Fujimura R. K., Nomura M. Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc Natl Acad Sci U S A. 1966 Jan;55(1):198–204. doi: 10.1073/pnas.55.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KENNELL D., MAGASANIK B. THE CONTROL OF THE RATE OF ENZYME SYNTHESIS IN AEROBACTER AEROGENES. Biochim Biophys Acta. 1964 Mar 9;81:418–434. doi: 10.1016/0926-6569(64)90127-0. [DOI] [PubMed] [Google Scholar]
  4. KENNELL D., MAGASANIK B. The relation of ribosome content to the rate of enzyme synthesis in Aerobacter aerogenes. Biochim Biophys Acta. 1962 Jan 22;55:139–151. doi: 10.1016/0006-3002(62)90940-x. [DOI] [PubMed] [Google Scholar]
  5. KENNELL D. PERSISTENCE OF MESSENGER RNA ACTIVITY IN BACILLUS MEGATERIUM TREATED WITH ACTINOMYCIN. J Mol Biol. 1964 Sep;9:789–800. doi: 10.1016/s0022-2836(64)80185-6. [DOI] [PubMed] [Google Scholar]
  6. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  7. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. I. Changes in nucleic acid composition. J Bacteriol. 1967 Jan;93(1):334–344. doi: 10.1128/jb.93.1.334-344.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. II. Rates of nucleic acid synthesis and methods for their measurement. J Bacteriol. 1967 Jan;93(1):345–356. doi: 10.1128/jb.93.1.345-356.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. IV. Cytochemical changes. J Bacteriol. 1967 Jan;93(1):367–378. doi: 10.1128/jb.93.1.367-378.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEHMAN I. R., ROUSSOS G. G., PRATT E. A. The deoxyribonucleases of Escherichia coli. II. Purification and properties of a ribonucleic acid-inhibitable endonuclease. J Biol Chem. 1962 Mar;237:819–828. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. LUBIN M., ENNIS H. L. ON THE ROLE OF INTRACELLULAR POTASSIUM IN PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Apr 27;80:614–631. doi: 10.1016/0926-6550(64)90306-8. [DOI] [PubMed] [Google Scholar]
  13. MANDELSTAM J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 1960 Sep;24(3):289–308. doi: 10.1128/br.24.3.289-308.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCarthy B. J., Britten R. J., Roberts R. B. The Synthesis of Ribosomes in E. coli: III. Synthesis of Ribosomal RNA. Biophys J. 1962 Jan;2(1):57–82. doi: 10.1016/s0006-3495(62)86841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McQuillen K., Roberts R. B., Britten R. J. SYNTHESIS OF NASCENT PROTEIN BY RIBOSOMES IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1959 Sep;45(9):1437–1447. doi: 10.1073/pnas.45.9.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakada D., Marquisee M. J. Relaxed synthesis of ribosomal RNA by a stringent strain of Escherichia coli. J Mol Biol. 1965 Sep;13(2):351–361. doi: 10.1016/s0022-2836(65)80102-4. [DOI] [PubMed] [Google Scholar]
  17. SCHLESSINGER D. PROTEIN SYNTHESIS BY POLYRIBOSOMES ON PROTOPLAST MEMBRANES OF B. MEGATERIUM. J Mol Biol. 1963 Nov;7:569–582. doi: 10.1016/s0022-2836(63)80103-5. [DOI] [PubMed] [Google Scholar]
  18. SPAHR P. F. Amino acid composition of ribosomes from Escherichia coli. J Mol Biol. 1962 May;4:395–406. doi: 10.1016/s0022-2836(62)80020-5. [DOI] [PubMed] [Google Scholar]
  19. Schlessinger D., Ben-Hamida F. Turnover of protein in Escherichia coli starving for nitrogen. Biochim Biophys Acta. 1966 Apr 18;119(1):171–182. doi: 10.1016/0005-2787(66)90048-7. [DOI] [PubMed] [Google Scholar]
  20. Staehelin T., Meselson M. In vitro recovery o ribosomes and of synthetic activity from synthetically inactive ribosomal subunits. J Mol Biol. 1966 Mar;16(1):245–249. doi: 10.1016/s0022-2836(66)80277-2. [DOI] [PubMed] [Google Scholar]
  21. Tissieres A., Schlessinger D., Gros F. AMINO ACID INCORPORATION INTO PROTEINS BY ESCHERICHIA COLI RIBOSOMES. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1450–1463. doi: 10.1073/pnas.46.11.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES