Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Jan;93(1):379–389. doi: 10.1002/path.1700930144

F Pilus as f+ Antigen

Masahide Ishibashi a,1
PMCID: PMC315010  PMID: 5335896

Abstract

Specific aggregate formation of F pili was observed, by electron microscopy, in a mixture of male Escherichia coli (or of isolated F pili) and anti-f+ serum. Cellular appendages other than F pili never showed such aggregation when mixed with anti-f+ serum. The f+ agglutinability of male cells, as well as F piliation, was sensitive to mechanical agitation. The f+ agglutination was inhibited when appropriate numbers of phage M12, capable of attaching to F pili, were mixed with the male culture before the addition of anti-f+ serum. Correlation between f+ agglutinability and the extent of F piliation was observed. It was concluded that the F pilus is the structure of the f+ antigen and is responsible for f+ agglutination.

Full text

PDF
379

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINTON C. C., Jr, GEMSKI P., Jr, CARNAHAN J. A NEW TYPE OF BACTERIAL PILUS GENETICALLY CONTROLLED BY THE FERTILITY FACTOR OF E. COLI K 12 AND ITS ROLE IN CHROMOSOME TRANSFER. Proc Natl Acad Sci U S A. 1964 Sep;52:776–783. doi: 10.1073/pnas.52.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  3. HAKURA A., OTSUJI N., HIROTA Y. A TEMPERATE PHAGE SPECIFIC FOR FEMALE STRAINS OF ESCHERICHIA COLI K 12. J Gen Microbiol. 1964 Apr;35:69–73. doi: 10.1099/00221287-35-1-69. [DOI] [PubMed] [Google Scholar]
  4. HIROTA Y., NISHIMURA Y., ORSKOV F., ORSKOV I. EFFECT OF DRUG-RESISTANCE FACTOR R ON THE F PROPERTIES OF ESCHERICHIA COLI. J Bacteriol. 1964 Feb;87:341–351. doi: 10.1128/jb.87.2.341-351.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ippen K. A., Valentine R. C. An assay for the male substance (F-pili) of Escherichia coli K-12. Biochem Biophys Res Commun. 1965 Oct 8;21(1):21–27. doi: 10.1016/0006-291x(65)90420-1. [DOI] [PubMed] [Google Scholar]
  6. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  7. LOEB T. Isolation of a bacteriophage specific for the F plus and Hfr mating types of Escherichia coli K-12. Science. 1960 Mar 25;131(3404):932–933. doi: 10.1126/science.131.3404.932. [DOI] [PubMed] [Google Scholar]
  8. LOEB T., ZINDER N. D. A bacteriophage containing RNA. Proc Natl Acad Sci U S A. 1961 Mar 15;47:282–289. doi: 10.1073/pnas.47.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MAEKELAE O., MAEKELAE P. H., SOIKKELI S. SEX-SPECIFICITY OF THE BACTERIOPHAGE T7. Ann Med Exp Biol Fenn. 1964;42:188–195. [PubMed] [Google Scholar]
  10. ORSKOV I., ORSKOV F. An antigen termed f-plus occurring in F-plus E. coli strains. Acta Pathol Microbiol Scand. 1960;48:37–46. [PubMed] [Google Scholar]
  11. SWANSTROM M., ADAMS M. H. Agar layer method for production of high titer phage stocks. Proc Soc Exp Biol Med. 1951 Nov;78(2):372–375. doi: 10.3181/00379727-78-19076. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES