Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Aug;94(2):434–440. doi: 10.1128/jb.94.2.434-440.1967

Metabolic Requirements for Microcycle Sporogenesis of Bacillus megaterium1

P K Holmes a, Hillel S Levinson a
PMCID: PMC315058  PMID: 4962704

Abstract

Spores of Bacillus megaterium QM B1551 germinated, elongated, and resporulated (microcycle sporogenesis) in simple chemically defined media which permitted no cell division. The second-stage spores thus produced were heat-stable and required heat activation for germination. The original amount of spore deoxyribonucleic acid tripled before completion of the cycle. Acetate and a small amount of a tricarboxylic acid cycle intermediate were the minimal organic metabolic requirements for microcycle sporogenesis. During this cycle, germinated cells oxidized acetate only after a delay, whether or not glucose was initially present. Spores that were germinated in the absence of a carbon source first oxidized an endogenous substrate, and then developed the ability to oxidize acetate.

Full text

PDF
434

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J Bacteriol. 1963 Feb;85:451–460. doi: 10.1128/jb.85.2.451-460.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HYATT M. T., LEVINSON H. S. Sulfure requirement for postgerminative development of Bacillus megaterium spores. J Bacteriol. 1957 Jul;74(1):87–93. doi: 10.1128/jb.74.1.87-93.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HYATT M. T., LEVINSON H. S. Utilization of phosphates in the postgerminative development of spores of Bacillus megaterium. J Bacteriol. 1959 Apr;77(4):487–496. doi: 10.1128/jb.77.4.487-496.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  6. LEVINSON H. S., HYATT M. T. EFFECT OF SPORULATION MEDIUM ON HEAT RESISTANCE, CHEMICAL COMPOSITION, AND GERMINATION OF BACILLUS MEGATERIUM SPORES. J Bacteriol. 1964 Apr;87:876–886. doi: 10.1128/jb.87.4.876-886.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Vinter V., Slepecky R. A. Direct Transition of Outgrowing Bacterial Spores to New Sporangia Without Intermediate Cell Division. J Bacteriol. 1965 Sep;90(3):803–807. doi: 10.1128/jb.90.3.803-807.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES