Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 25;67(Pt 7):o1822. doi: 10.1107/S160053681102455X

1-Benzyl-1H-benzimidazol-2(3H)-one

Younes Ouzidan a,*, El Mokhtar Essassi b, Santiago V Luis c, Michael Bolte d, Lahcen El Ammari e
PMCID: PMC3151763  PMID: 21837191

Abstract

The fused five- and six-membered rings in the title compound, C14H12N2O, are essentially planar, the largest deviation from the mean plane being 0.023 (2) Å. The dihedral angle between the benzimidazole mean plane and the phenyl ring is 68.50 (6)°. In the crystal, each mol­ecule is linked to its symmetry equivalent created by a crystallographic inversion center by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the biological activity of benzimidazole derivatives, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For related structures, see: Ouzidan et al. (2011a ,b ).graphic file with name e-67-o1822-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O

  • M r = 224.26

  • Monoclinic, Inline graphic

  • a = 13.8652 (7) Å

  • b = 5.7975 (3) Å

  • c = 14.9337 (7) Å

  • β = 109.5346 (12)°

  • V = 1131.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.44 × 0.28 mm

Data collection

  • Bruker CCD three-circle diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.977

  • 9007 measured reflections

  • 3392 independent reflections

  • 2514 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.126

  • S = 1.05

  • 3392 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681102455X/im2298sup1.cif

e-67-o1822-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102455X/im2298Isup2.hkl

e-67-o1822-Isup2.hkl (166.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102455X/im2298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.845 (1) 158

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report in this paper the synthesis of a new benzimidazol-2-one derivative by action of benzyl chloride with 1H-benzimidazol-2-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound (Scheme 1).

The two fused five and six-membered rings are almost planar with the maximum deviation of 0.023 (2) Å from C2. The dihedral angle between the benzimidazole system and the phenyl ring is 68.50 (6)° (Fig.1). In the crystal structure each molecule is linked to its symmetry equivalent created by the crystallographic inversion center by N–H···O hydrogen bonds to form pseudo-dimers as shown in Fg.2.

Experimental

To 1H-benzimidazol-2-one (0.2 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added benzyl chloride (0.34 ml, 3 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol to give colorless crystals (yield: 12%).

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, and 0.97 Å for aromatic and methylene H atoms, respectively, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

: Molecular view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

: Formation of pseudo-dimers between two molecules by N–H···O hydrogen bonds (dashed lines).

Crystal data

C14H12N2O F(000) = 472
Mr = 224.26 Dx = 1.317 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3392 reflections
a = 13.8652 (7) Å θ = 1.7–30.5°
b = 5.7975 (3) Å µ = 0.09 mm1
c = 14.9337 (7) Å T = 298 K
β = 109.5346 (12)° Prism, colourless
V = 1131.33 (10) Å3 0.50 × 0.44 × 0.28 mm
Z = 4

Data collection

Bruker CCD three-circle diffractometer 3392 independent reflections
Radiation source: fine-focus sealed tube 2514 reflections with I > 2σ(I)
graphite Rint = 0.020
ω scans θmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→19
Tmin = 0.959, Tmax = 0.977 k = −8→8
9007 measured reflections l = −16→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1866P] where P = (Fo2 + 2Fc2)/3
3392 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.59908 (7) 0.79068 (16) 0.53088 (6) 0.0462 (2)
N1 0.46509 (7) 0.82117 (17) 0.38695 (7) 0.0391 (2)
H1 0.4387 0.9497 0.3958 0.066 (5)*
C1 0.54932 (8) 0.72077 (19) 0.45072 (8) 0.0354 (2)
N2 0.56888 (7) 0.52373 (16) 0.40851 (7) 0.0350 (2)
C2 0.49440 (8) 0.49698 (19) 0.31953 (8) 0.0343 (2)
C3 0.47930 (10) 0.3259 (2) 0.25181 (9) 0.0429 (3)
H3 0.5232 0.2003 0.2611 0.050 (4)*
C4 0.39558 (11) 0.3498 (3) 0.16918 (9) 0.0513 (3)
H4 0.3834 0.2382 0.1220 0.060 (4)*
C5 0.32981 (10) 0.5368 (3) 0.15565 (9) 0.0510 (3)
H5 0.2745 0.5477 0.0995 0.058 (4)*
C6 0.34472 (10) 0.7081 (2) 0.22409 (9) 0.0455 (3)
H6 0.3002 0.8326 0.2151 0.056 (4)*
C7 0.42820 (9) 0.68586 (19) 0.30576 (8) 0.0357 (2)
C8 0.64791 (9) 0.3581 (2) 0.45689 (8) 0.0378 (2)
H8A 0.6173 0.2060 0.4513 0.044 (4)*
H8B 0.6744 0.3968 0.5239 0.041 (3)*
C11 0.73601 (8) 0.34906 (19) 0.41875 (8) 0.0354 (2)
C12 0.75053 (11) 0.1565 (2) 0.36992 (10) 0.0491 (3)
H12 0.7048 0.0339 0.3591 0.061 (5)*
C13 0.83286 (13) 0.1452 (3) 0.33705 (12) 0.0638 (4)
H13 0.8416 0.0160 0.3036 0.088 (6)*
C14 0.90122 (13) 0.3235 (3) 0.35368 (12) 0.0659 (4)
H14 0.9569 0.3145 0.3324 0.085 (6)*
C15 0.88757 (11) 0.5165 (3) 0.40199 (12) 0.0597 (4)
H15 0.9338 0.6382 0.4129 0.068 (5)*
C16 0.80491 (10) 0.5294 (2) 0.43437 (10) 0.0459 (3)
H16 0.7958 0.6601 0.4668 0.054 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0430 (5) 0.0475 (5) 0.0452 (5) −0.0005 (4) 0.0110 (4) −0.0138 (4)
N1 0.0386 (5) 0.0356 (5) 0.0443 (5) 0.0044 (4) 0.0155 (4) −0.0033 (4)
C1 0.0336 (5) 0.0348 (5) 0.0411 (6) −0.0025 (4) 0.0171 (5) −0.0040 (4)
N2 0.0330 (4) 0.0349 (5) 0.0367 (5) 0.0019 (4) 0.0114 (4) −0.0035 (4)
C2 0.0326 (5) 0.0368 (5) 0.0347 (5) −0.0011 (4) 0.0130 (4) 0.0000 (4)
C3 0.0447 (6) 0.0405 (6) 0.0429 (6) 0.0018 (5) 0.0137 (5) −0.0065 (5)
C4 0.0515 (7) 0.0566 (8) 0.0422 (7) −0.0042 (6) 0.0109 (6) −0.0116 (6)
C5 0.0412 (6) 0.0656 (9) 0.0404 (6) −0.0013 (6) 0.0060 (5) 0.0005 (6)
C6 0.0381 (6) 0.0500 (7) 0.0479 (7) 0.0064 (5) 0.0134 (5) 0.0065 (6)
C7 0.0346 (5) 0.0364 (5) 0.0395 (6) −0.0003 (4) 0.0167 (5) 0.0006 (4)
C8 0.0389 (6) 0.0371 (6) 0.0384 (6) 0.0039 (4) 0.0141 (5) 0.0041 (5)
C11 0.0356 (5) 0.0365 (5) 0.0327 (5) 0.0070 (4) 0.0094 (4) 0.0053 (4)
C12 0.0516 (7) 0.0422 (7) 0.0547 (8) 0.0073 (6) 0.0195 (6) −0.0022 (6)
C13 0.0697 (10) 0.0637 (9) 0.0675 (9) 0.0226 (8) 0.0354 (8) −0.0002 (8)
C14 0.0551 (9) 0.0814 (11) 0.0728 (10) 0.0221 (8) 0.0367 (8) 0.0184 (9)
C15 0.0445 (7) 0.0656 (9) 0.0710 (10) −0.0033 (7) 0.0221 (7) 0.0141 (8)
C16 0.0446 (7) 0.0432 (6) 0.0499 (7) 0.0009 (5) 0.0158 (5) 0.0008 (5)

Geometric parameters (Å, °)

O1—C1 1.2332 (14) C6—H6 0.9300
N1—C1 1.3660 (15) C8—C11 1.5114 (15)
N1—C7 1.3901 (15) C8—H8A 0.9700
N1—H1 0.8600 C8—H8B 0.9700
C1—N2 1.3749 (14) C11—C16 1.3824 (17)
N2—C2 1.3922 (14) C11—C12 1.3845 (17)
N2—C8 1.4546 (14) C12—C13 1.387 (2)
C2—C3 1.3815 (16) C12—H12 0.9300
C2—C7 1.3991 (15) C13—C14 1.368 (3)
C3—C4 1.3897 (19) C13—H13 0.9300
C3—H3 0.9300 C14—C15 1.379 (2)
C4—C5 1.387 (2) C14—H14 0.9300
C4—H4 0.9300 C15—C16 1.3869 (19)
C5—C6 1.3902 (19) C15—H15 0.9300
C5—H5 0.9300 C16—H16 0.9300
C6—C7 1.3783 (17)
C1—N1—C7 110.31 (9) N1—C7—C2 106.35 (10)
C1—N1—H1 124.8 N2—C8—C11 113.90 (9)
C7—N1—H1 124.8 N2—C8—H8A 108.8
O1—C1—N1 127.38 (11) C11—C8—H8A 108.8
O1—C1—N2 125.88 (11) N2—C8—H8B 108.8
N1—C1—N2 106.74 (10) C11—C8—H8B 108.8
C1—N2—C2 109.46 (9) H8A—C8—H8B 107.7
C1—N2—C8 123.52 (10) C16—C11—C12 119.00 (11)
C2—N2—C8 126.56 (9) C16—C11—C8 120.68 (11)
C3—C2—N2 131.39 (10) C12—C11—C8 120.30 (11)
C3—C2—C7 121.52 (11) C11—C12—C13 120.43 (14)
N2—C2—C7 107.09 (9) C11—C12—H12 119.8
C2—C3—C4 117.10 (11) C13—C12—H12 119.8
C2—C3—H3 121.5 C14—C13—C12 120.16 (14)
C4—C3—H3 121.5 C14—C13—H13 119.9
C5—C4—C3 121.38 (12) C12—C13—H13 119.9
C5—C4—H4 119.3 C13—C14—C15 120.03 (14)
C3—C4—H4 119.3 C13—C14—H14 120.0
C4—C5—C6 121.48 (12) C15—C14—H14 120.0
C4—C5—H5 119.3 C14—C15—C16 120.02 (14)
C6—C5—H5 119.3 C14—C15—H15 120.0
C7—C6—C5 117.27 (11) C16—C15—H15 120.0
C7—C6—H6 121.4 C11—C16—C15 120.36 (13)
C5—C6—H6 121.4 C11—C16—H16 119.8
C6—C7—N1 132.40 (11) C15—C16—H16 119.8
C6—C7—C2 121.25 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.03 2.845 (1) 158

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2298).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345. [DOI] [PubMed]
  4. Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893—930. [DOI] [PubMed]
  5. Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998. [DOI] [PubMed]
  6. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
  7. Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363. [DOI] [PMC free article] [PubMed]
  8. Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681102455X/im2298sup1.cif

e-67-o1822-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102455X/im2298Isup2.hkl

e-67-o1822-Isup2.hkl (166.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102455X/im2298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES