Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 25;67(Pt 7):o1807–o1808. doi: 10.1107/S1600536811023403

[(2S,5R)-1-Methyl-5-phenyl­pyrrolidin-2-yl]diphenyl­methanol

Julio Zukerman-Schpector a,*, Angélica Venturini Moro b, Diogo S Lüdtke c, Carlos Roque D Correia b, Edward R T Tiekink d
PMCID: PMC3151780  PMID: 21837179

Abstract

In the title compound, C24H25NO, the phenyl and diphenyl­methanol substituents are syn to each other. The pyrrolidine ring has an envelope conformation with the flap atom being the C atom bearing the phenyl substituent. The hy­droxy group forms an intra­molecular hydrogen bond with the pyrrolidine N atom, and the phenyl rings lie to same side of the mol­ecule. The crystal packing features C—H⋯π inter­actions. Two slightly displaced co-planar orientations were found for one of the phenyl rings; the major component had a site-occupancy factor of 0.782 (15).

Related literature

For background to the highly enanti­oselective addition of aryl­zinc reagents to aldehydes, see: Yoon & Jacobsen (2003), Taylor, et al. (2011). For related structures, see: Moro et al. (2010); Shabbir et al. (2009). For details of the synthetic protocols, see: Walsh & Kozlowski (2008); Paixão, et al. (2008). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-o1807-scheme1.jpg

Experimental

Crystal data

  • C24H25NO

  • M r = 343.45

  • Orthorhombic, Inline graphic

  • a = 9.9672 (2) Å

  • b = 13.3376 (2) Å

  • c = 14.4369 (2) Å

  • V = 1919.22 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.22 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 24972 measured reflections

  • 2262 independent reflections

  • 1979 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.092

  • S = 1.05

  • 2262 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023403/hg5054sup1.cif

e-67-o1807-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023403/hg5054Isup2.hkl

e-67-o1807-Isup2.hkl (108.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O—H1O⋯N 0.84 2.02 2.648 (2) 132
C28—H28⋯Oi 0.95 2.78 3.359 (7) 120
C17—H17⋯Cgii 0.95 2.92 3.776 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Brazilian agencies FAPESP, CNPq (research fellowships to JZS, DSL and CRDC) and CAPES (808/2009 to JZS) for financial support.

supplementary crystallographic information

Comment

Chiral β-amino alcohols have found numerous applications in asymmetric catalysis in the past and continue to play a pivotal role in the development of new reactions and chiral ligands (Walsh & Kozlowski, 2008). One asymmetric reaction where chiral β-amino alcohol ligands have found enormous success is the enantioselective addition of organozinc reagents to carbonyl compounds, with particular emphasis in the alkylation of aldehydes by the addition of diethylzinc. A more challenging reaction is the asymmetric arylation reaction, since arylzinc reagents are more reactive than the dialkylzinc and the ligand turnover has to highly efficient in order to circumvent the uncatalyzed background reaction (Paixão et al., 2008). Considering the proline motif as a privileged framework for the development of asymmetric catalysts (Yoon & Jacobsen, 2003) we have recently described a new chiral ligand for the highly enantioselective addition of arylzinc reagents to aldehydes. The ligands were prepared by an straightforward synthetic sequence, with a Heck reaction of arenediazonium salts (Heck–Matsuda reaction) as the key step (Taylor et al., 2011). Herein, we describe the crystal structure analysis of a representative molecule, the title compound, (I).

The crystal structure analysis of (I) confirms the structure as having the expected syn relationship between the phenyl and the diphenylmethanol substituents, Fig. 1 (Moro et al., 2010; Shabbir et al., 2009). The pyrrolidine ring is in an envelope conformation with C1 out of the plane formed by the other four atoms, the ring puckering parameters being: q2 = 0.379 (2) ° and φ2 = 32.0 (3) ° (Cremer & Pople, 1975). The hydroxy group is orientated over the five-membered ring to facilitate the formation of an intramolecular O—H···N hydrogen bond, Table 1. The crystal packing is dominated by C—H···π interactions, Table 1. Globally. the pyrrolidine pack in the ab plane and are sandwiched by benzene rings along the c direction, Fig. 2.

Experimental

The starting (2S)-1-tert-butyl 2-methyl 5-argio-1H-pyrrole-1,2(2H,5H)-dicarboxylate was prepared as described in previous work (Moro et al., 2010). To a round-bottomed flask, under a hydrogen atmosphere, were added the Heck adduct ((2S))-1-tert-butyl 2-methyl 5-argio-1H-pyrrole-1,2(2H,5H)-dicarboxylate) (3 mmol) and dry methanol (60 ml), followed by the addition of Pd/C 10% (20% w/w, 0.18 g). The reaction was stirred at room temperature for 24 h. After this time, the crude reaction mixture was filtered in a plug of celite and concentrated under reduced pressure. The resulting product was used without further purification. To a round-bottomed flask, under an argon atmosphere, PhMgBr (5 equiv., 15 mmol) in THF (15 ml, 1 M solution) was added to a THF (10 ml) solution of the (2S)-1-tert-butyl 2-methyl 5-argiopyrrolidine-1,2-dicarboxylate (3 mmol) at room temperature, and the mixture was stirred for 4 h, before being quenched by careful addition of NaOH 2M. The heterogeneous mixture was filtered through a pad of Celite and washed with dichloromethane (3 x 50 ml). The combined organic phases were dried with MgSO4, filtered and the solvent removed under vacuum. The resulting product was used without further purification. To a suspension of lithium aluminium hydride (1.14 g, 30 mmol) in THF (15 ml) in a round-bottomed flask, under an argon atmosphere and cooled to 273 K, a solution of the (2S,5R)-tert-butyl 2-(hydroxydiphenylmethyl)-5-phenylpyrrolidine-1-carboxylate in THF (5 ml) was added. The resulting mixture was refluxed for 12 h. After this time, the mixture was cooled to 273 K and NaOH (4M) was added. The mixture was filtered through a pad of Celite and washed with ethyl acetate. The organic layer was separated, and the filtrate was extracted with ethyl acetate (3 x 50 ml). The combined organic phases were dried with MgSO4, filtered and the solvent removed under vacuum. The crude product was purified by flash chromatography in hexanes/ethyl acetate (95:05), to afford the 0.340 g (33%) of pure ((2S,5R)-1-methyl-5-phenylpyrrolidin-2-yl)diphenylmethanol (cis isomer) and 0.278 g (27%) of pure ((2S,5S)-1-methyl-5-phenylpyrrolidin-2-yl)diphenylmethanol (trans isomer) (60% combined yield). Suitable crystals for X-ray analysis were obtained by vapour diffusion from n-hexane/ethyl ether at 298 K. [α] D20 = +115 (c = 1.02, CHCl3). 1H NMR [CDCl3, 500 MHz, δ (p.p.m.)]: 1.66 (s, 3H, N—CH3), 1.68–1.83 (m, 2H, CH2), 1.92–2.03 (m, 2H, CH2), 3.54 (dd, J1 = 10.8 Hz, J2 = 6.0 Hz, 1H, CH), 3.89 (dd, J1 = 9.8 Hz, J2 = 4.0 Hz, 1H, CH), 4.97 (bs, 1H, OH), 7.09 (t, J = 7.0 Hz, 1H, Ar), 7.13 (t, J = 7.0 Hz, 1H, Ar), 7.19–7.33 (m, 9H, Ar), 7.58 (dd, J1 = 8.5 Hz, J2 = 1.0 Hz, 2H, Ar), 7.68 (dd, J1 = 8.5 Hz, J2 = 1.0 Hz, 2H, Ar). 13C NMR [CDCl3, 125 MHz, δ (p.p.m.)]: 28.2, 34.5, 41.0, 72.5, 73.4, 77.8, 125.3, 125.4, 126.1, 126.2, 126.9, 127.2, 128.0, 128.1, 128.4, 142.6, 146.6, 148.0. IR (film, cm-1): 3428, 3263, 1449. MS (ESI): 209, 167. HRMS (ESI) calc for C24H25NO + H: 344.2014, found: 344.2083.

Refinement

All H-atoms were placed in calculated positions (O—H = 0.84 Å, and C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O; methyl-C). In the absence of significant anomalous scattering effects, 1707 Friedel pairs were averaged in the final refinement. The 2S,5R designation was chosen based on the synthesis (Moro et al., 2010). The C7–C12 benzene ring was found to be disordered with one orientation slightly displaced with respect to the second, co-planar, orientation. In the final refinement, matching C atoms were constrained to have the same anisotropic displacement parameter. The major component of the disordered residue had a site occupancy factor = 0.782 (15).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Only the major component of the disordered benzene ring is illustrated.

Fig. 2.

Fig. 2.

A view in projection down the b axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines.

Crystal data

C24H25NO F(000) = 736
Mr = 343.45 Dx = 1.189 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7679 reflections
a = 9.9672 (2) Å θ = 2.5–25.5°
b = 13.3376 (2) Å µ = 0.07 mm1
c = 14.4369 (2) Å T = 100 K
V = 1919.22 (5) Å3 Irregular, colourless
Z = 4 0.22 × 0.15 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 1979 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.039
graphite θmax = 26.5°, θmin = 2.1°
φ and ω scans h = −12→12
24972 measured reflections k = −16→16
2262 independent reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.2712P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2262 reflections Δρmax = 0.17 e Å3
255 parameters Δρmin = −0.19 e Å3
0 restraints Absolute structure: nd
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O 0.11866 (14) 0.86869 (11) 0.21128 (12) 0.0486 (4)
H1o 0.1387 0.8166 0.1816 0.073*
N 0.30995 (17) 0.77434 (11) 0.11848 (11) 0.0360 (4)
C1 0.3091 (2) 0.74937 (15) 0.01898 (13) 0.0364 (4)
H1 0.4023 0.7558 −0.0058 0.044*
C2 0.2230 (2) 0.83278 (15) −0.02138 (14) 0.0422 (5)
H2A 0.2437 0.8432 −0.0877 0.051*
H2B 0.1264 0.8169 −0.0149 0.051*
C3 0.2595 (2) 0.92449 (15) 0.03493 (14) 0.0409 (5)
H3A 0.1786 0.9652 0.0481 0.049*
H3B 0.3250 0.9665 0.0010 0.049*
C4 0.3212 (2) 0.88486 (13) 0.12565 (12) 0.0327 (4)
H4 0.4177 0.9050 0.1300 0.039*
C5 0.4120 (2) 0.71912 (17) 0.16989 (15) 0.0510 (6)
H5A 0.3976 0.6470 0.1619 0.076*
H5B 0.4059 0.7362 0.2358 0.076*
H5C 0.5011 0.7371 0.1465 0.076*
C12 0.24357 (19) 0.92007 (13) 0.21337 (13) 0.0333 (4)
C25 0.2101 (7) 1.0299 (5) 0.2126 (5) 0.0299 (10) 0.782 (15)
C26 0.0798 (6) 1.0643 (6) 0.2313 (5) 0.0443 (11) 0.782 (15)
H26 0.0112 1.0168 0.2439 0.053* 0.782 (15)
C27 0.0485 (7) 1.1642 (4) 0.2320 (3) 0.0504 (12) 0.782 (15)
H27 −0.0405 1.1847 0.2458 0.060* 0.782 (15)
C28 0.1454 (8) 1.2356 (3) 0.2127 (3) 0.0462 (14) 0.782 (15)
H28 0.1232 1.3049 0.2128 0.055* 0.782 (15)
C29 0.2743 (7) 1.2049 (4) 0.1933 (3) 0.0441 (15) 0.782 (15)
H29 0.3421 1.2532 0.1810 0.053* 0.782 (15)
C30 0.3055 (7) 1.1029 (6) 0.1918 (5) 0.0383 (11) 0.782 (15)
H30 0.3940 1.0827 0.1762 0.046* 0.782 (15)
C13 0.3186 (2) 0.89712 (14) 0.30368 (13) 0.0396 (5)
C14 0.2559 (3) 0.84209 (16) 0.37346 (15) 0.0563 (7)
H14 0.1668 0.8185 0.3648 0.068*
C15 0.3229 (5) 0.8218 (2) 0.45513 (17) 0.0781 (10)
H15 0.2799 0.7831 0.5017 0.094*
C16 0.4509 (4) 0.8566 (2) 0.46997 (18) 0.0800 (11)
H16 0.4959 0.8426 0.5265 0.096*
C17 0.5129 (3) 0.91177 (18) 0.40224 (18) 0.0656 (8)
H17 0.6011 0.9366 0.4121 0.079*
C18 0.4475 (2) 0.93152 (15) 0.31956 (16) 0.0479 (5)
H18 0.4920 0.9693 0.2730 0.057*
C6 0.2582 (2) 0.64512 (15) −0.00095 (14) 0.0399 (5)
C7 0.3065 (3) 0.59257 (18) −0.07668 (16) 0.0548 (6)
H7 0.3759 0.6207 −0.1136 0.066*
C8 0.2548 (4) 0.4995 (2) −0.0990 (2) 0.0711 (8)
H8 0.2877 0.4650 −0.1519 0.085*
C9 0.1568 (3) 0.45654 (19) −0.0460 (2) 0.0705 (8)
H9 0.1223 0.3923 −0.0616 0.085*
C10 0.1091 (3) 0.50665 (18) 0.0295 (2) 0.0645 (7)
H10 0.0417 0.4768 0.0670 0.077*
C11 0.1583 (3) 0.60091 (17) 0.05168 (18) 0.0544 (6)
H11 0.1230 0.6356 0.1037 0.065*
C19 0.235 (3) 1.043 (2) 0.204 (2) 0.0299 (10) 0.218 (15)
C20 0.116 (2) 1.072 (3) 0.238 (2) 0.0443 (11) 0.218 (15)
H20 0.0495 1.0280 0.2623 0.053* 0.218 (15)
C21 0.101 (3) 1.1852 (17) 0.2343 (15) 0.0504 (12) 0.218 (15)
H21 0.0187 1.2167 0.2509 0.060* 0.218 (15)
C22 0.207 (3) 1.2397 (15) 0.2064 (13) 0.0462 (14) 0.218 (15)
H22 0.1991 1.3107 0.2057 0.055* 0.218 (15)
C23 0.323 (2) 1.1984 (16) 0.1794 (14) 0.0441 (15) 0.218 (15)
H23 0.3949 1.2404 0.1602 0.053* 0.218 (15)
C24 0.340 (2) 1.098 (2) 0.179 (2) 0.0383 (11) 0.218 (15)
H24 0.4225 1.0679 0.1620 0.046* 0.218 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0386 (8) 0.0402 (8) 0.0671 (10) −0.0100 (7) 0.0144 (7) −0.0061 (7)
N 0.0446 (9) 0.0298 (8) 0.0337 (8) 0.0063 (8) −0.0033 (8) −0.0016 (6)
C1 0.0357 (10) 0.0407 (10) 0.0327 (10) 0.0019 (9) 0.0008 (8) −0.0048 (8)
C2 0.0501 (12) 0.0411 (11) 0.0355 (10) −0.0006 (10) −0.0064 (9) 0.0013 (9)
C3 0.0459 (12) 0.0377 (10) 0.0392 (11) −0.0011 (10) −0.0040 (9) 0.0025 (8)
C4 0.0331 (10) 0.0304 (9) 0.0344 (9) −0.0005 (8) −0.0009 (8) 0.0012 (7)
C5 0.0668 (15) 0.0439 (12) 0.0423 (12) 0.0218 (11) −0.0111 (11) −0.0075 (9)
C12 0.0318 (9) 0.0277 (9) 0.0405 (10) −0.0023 (8) 0.0049 (8) −0.0005 (8)
C25 0.034 (3) 0.026 (2) 0.0295 (18) −0.0063 (17) 0.0048 (17) 0.0031 (14)
C26 0.042 (3) 0.0436 (18) 0.047 (2) 0.008 (3) 0.005 (3) −0.0021 (14)
C27 0.055 (3) 0.042 (2) 0.0541 (15) 0.013 (2) 0.011 (2) −0.0058 (15)
C28 0.068 (4) 0.0304 (12) 0.0402 (14) 0.012 (2) 0.002 (2) −0.0049 (11)
C29 0.059 (4) 0.0318 (14) 0.042 (2) −0.005 (3) −0.006 (2) 0.0003 (14)
C30 0.035 (3) 0.0340 (13) 0.046 (2) −0.003 (2) −0.002 (2) 0.0041 (16)
C13 0.0591 (13) 0.0253 (9) 0.0344 (10) 0.0074 (9) 0.0060 (9) −0.0043 (7)
C14 0.0913 (18) 0.0380 (11) 0.0395 (12) 0.0125 (13) 0.0202 (12) 0.0008 (9)
C15 0.151 (3) 0.0489 (15) 0.0343 (13) 0.030 (2) 0.0228 (17) 0.0036 (11)
C16 0.149 (3) 0.0556 (16) 0.0352 (13) 0.042 (2) −0.0182 (17) −0.0086 (12)
C17 0.091 (2) 0.0513 (13) 0.0544 (15) 0.0220 (15) −0.0274 (14) −0.0158 (12)
C18 0.0645 (14) 0.0357 (11) 0.0434 (12) 0.0060 (11) −0.0100 (11) −0.0020 (9)
C6 0.0434 (11) 0.0362 (10) 0.0401 (11) 0.0066 (9) −0.0071 (9) −0.0035 (8)
C7 0.0678 (15) 0.0495 (13) 0.0473 (12) 0.0054 (13) −0.0030 (12) −0.0123 (10)
C8 0.090 (2) 0.0554 (14) 0.0674 (17) 0.0117 (15) −0.0144 (17) −0.0271 (13)
C9 0.0798 (19) 0.0372 (12) 0.094 (2) 0.0030 (13) −0.0359 (18) −0.0136 (14)
C10 0.0615 (15) 0.0442 (13) 0.088 (2) −0.0066 (12) −0.0111 (15) 0.0042 (14)
C11 0.0562 (14) 0.0433 (12) 0.0637 (15) −0.0025 (11) 0.0020 (12) −0.0047 (11)
C19 0.034 (3) 0.026 (2) 0.0295 (18) −0.0063 (17) 0.0048 (17) 0.0031 (14)
C20 0.042 (3) 0.0436 (18) 0.047 (2) 0.008 (3) 0.005 (3) −0.0021 (14)
C21 0.055 (3) 0.042 (2) 0.0541 (15) 0.013 (2) 0.011 (2) −0.0058 (15)
C22 0.068 (4) 0.0304 (12) 0.0402 (14) 0.012 (2) 0.002 (2) −0.0049 (11)
C23 0.059 (4) 0.0318 (14) 0.042 (2) −0.005 (3) −0.006 (2) 0.0003 (14)
C24 0.035 (3) 0.0340 (13) 0.046 (2) −0.003 (2) −0.002 (2) 0.0041 (16)

Geometric parameters (Å, °)

O—C12 1.421 (2) C13—C18 1.383 (3)
O—H1o 0.8401 C13—C14 1.394 (3)
N—C5 1.459 (3) C14—C15 1.382 (4)
N—C1 1.475 (2) C14—H14 0.9500
N—C4 1.482 (2) C15—C16 1.374 (5)
C1—C6 1.508 (3) C15—H15 0.9500
C1—C2 1.521 (3) C16—C17 1.371 (4)
C1—H1 1.0000 C16—H16 0.9500
C2—C3 1.513 (3) C17—C18 1.385 (3)
C2—H2A 0.9900 C17—H17 0.9500
C2—H2B 0.9900 C18—H18 0.9500
C3—C4 1.541 (3) C6—C11 1.384 (3)
C3—H3A 0.9900 C6—C7 1.385 (3)
C3—H3B 0.9900 C7—C8 1.383 (4)
C4—C12 1.557 (3) C7—H7 0.9500
C4—H4 1.0000 C8—C9 1.366 (5)
C5—H5A 0.9800 C8—H8 0.9500
C5—H5B 0.9800 C9—C10 1.364 (4)
C5—H5C 0.9800 C9—H9 0.9500
C12—C25 1.503 (7) C10—C11 1.387 (3)
C12—C13 1.534 (3) C10—H10 0.9500
C12—C19 1.65 (3) C11—H11 0.9500
C25—C30 1.394 (7) C19—C24 1.32 (3)
C25—C26 1.403 (9) C19—C20 1.34 (4)
C26—C27 1.368 (9) C20—C21 1.51 (4)
C26—H26 0.9500 C20—H20 0.9500
C27—C28 1.385 (6) C21—C22 1.34 (2)
C27—H27 0.9500 C21—H21 0.9500
C28—C29 1.378 (5) C22—C23 1.34 (2)
C28—H28 0.9500 C22—H22 0.9500
C29—C30 1.395 (9) C23—C24 1.35 (4)
C29—H29 0.9500 C23—H23 0.9500
C30—H30 0.9500 C24—H24 0.9500
C12—O—H1o 101.6 C25—C30—C29 121.7 (5)
C5—N—C1 112.69 (16) C25—C30—H30 119.1
C5—N—C4 114.43 (16) C29—C30—H30 119.1
C1—N—C4 107.05 (14) C18—C13—C14 118.1 (2)
N—C1—C6 113.34 (16) C18—C13—C12 121.84 (18)
N—C1—C2 102.20 (16) C14—C13—C12 120.0 (2)
C6—C1—C2 114.29 (17) C15—C14—C13 120.2 (3)
N—C1—H1 108.9 C15—C14—H14 119.9
C6—C1—H1 108.9 C13—C14—H14 119.9
C2—C1—H1 108.9 C16—C15—C14 121.0 (3)
C3—C2—C1 104.46 (16) C16—C15—H15 119.5
C3—C2—H2A 110.9 C14—C15—H15 119.5
C1—C2—H2A 110.9 C17—C16—C15 119.3 (3)
C3—C2—H2B 110.9 C17—C16—H16 120.4
C1—C2—H2B 110.9 C15—C16—H16 120.4
H2A—C2—H2B 108.9 C16—C17—C18 120.3 (3)
C2—C3—C4 105.99 (16) C16—C17—H17 119.8
C2—C3—H3A 110.5 C18—C17—H17 119.8
C4—C3—H3A 110.5 C13—C18—C17 121.1 (2)
C2—C3—H3B 110.5 C13—C18—H18 119.5
C4—C3—H3B 110.5 C17—C18—H18 119.5
H3A—C3—H3B 108.7 C11—C6—C7 117.9 (2)
N—C4—C3 104.56 (15) C11—C6—C1 122.02 (19)
N—C4—C12 108.61 (15) C7—C6—C1 120.0 (2)
C3—C4—C12 112.90 (15) C8—C7—C6 120.6 (3)
N—C4—H4 110.2 C8—C7—H7 119.7
C3—C4—H4 110.2 C6—C7—H7 119.7
C12—C4—H4 110.2 C9—C8—C7 120.8 (3)
N—C5—H5A 109.5 C9—C8—H8 119.6
N—C5—H5B 109.5 C7—C8—H8 119.6
H5A—C5—H5B 109.5 C10—C9—C8 119.4 (3)
N—C5—H5C 109.5 C10—C9—H9 120.3
H5A—C5—H5C 109.5 C8—C9—H9 120.3
H5B—C5—H5C 109.5 C9—C10—C11 120.3 (3)
O—C12—C25 106.0 (3) C9—C10—H10 119.8
O—C12—C13 110.43 (16) C11—C10—H10 119.8
C25—C12—C13 108.0 (3) C6—C11—C10 120.9 (2)
O—C12—C4 105.84 (15) C6—C11—H11 119.5
C25—C12—C4 113.5 (3) C10—C11—H11 119.5
C13—C12—C4 112.86 (15) C24—C19—C20 130 (3)
O—C12—C19 115.5 (11) C24—C19—C12 122 (2)
C13—C12—C19 107.2 (12) C20—C19—C12 108 (2)
C4—C12—C19 105.0 (10) C19—C20—C21 111 (2)
C30—C25—C26 116.4 (6) C19—C20—H20 124.5
C30—C25—C12 122.1 (5) C21—C20—H20 124.5
C26—C25—C12 121.5 (5) C22—C21—C20 118.2 (18)
C27—C26—C25 122.1 (5) C22—C21—H21 120.9
C27—C26—H26 119.0 C20—C21—H21 120.9
C25—C26—H26 119.0 C23—C22—C21 123.0 (18)
C26—C27—C28 120.6 (4) C23—C22—H22 118.5
C26—C27—H27 119.7 C21—C22—H22 118.5
C28—C27—H27 119.7 C22—C23—C24 121 (2)
C29—C28—C27 119.1 (4) C22—C23—H23 119.5
C29—C28—H28 120.4 C24—C23—H23 119.5
C27—C28—H28 120.4 C19—C24—C23 117 (2)
C28—C29—C30 120.0 (4) C19—C24—H24 121.7
C28—C29—H29 120.0 C23—C24—H24 121.7
C30—C29—H29 120.0
C5—N—C1—C6 70.2 (2) O—C12—C13—C14 −6.8 (2)
C4—N—C1—C6 −163.11 (17) C25—C12—C13—C14 108.7 (3)
C5—N—C1—C2 −166.29 (18) C4—C12—C13—C14 −124.99 (18)
C4—N—C1—C2 −39.6 (2) C19—C12—C13—C14 119.8 (10)
N—C1—C2—C3 36.6 (2) C18—C13—C14—C15 −1.0 (3)
C6—C1—C2—C3 159.41 (17) C12—C13—C14—C15 −179.62 (19)
C1—C2—C3—C4 −20.7 (2) C13—C14—C15—C16 1.2 (4)
C5—N—C4—C3 152.32 (17) C14—C15—C16—C17 −0.4 (4)
C1—N—C4—C3 26.7 (2) C15—C16—C17—C18 −0.4 (4)
C5—N—C4—C12 −86.9 (2) C14—C13—C18—C17 0.2 (3)
C1—N—C4—C12 147.48 (16) C12—C13—C18—C17 178.72 (19)
C2—C3—C4—N −3.0 (2) C16—C17—C18—C13 0.6 (3)
C2—C3—C4—C12 −120.85 (18) N—C1—C6—C11 34.1 (3)
N—C4—C12—O −45.89 (19) C2—C1—C6—C11 −82.4 (2)
C3—C4—C12—O 69.60 (19) N—C1—C6—C7 −149.2 (2)
N—C4—C12—C25 −161.7 (3) C2—C1—C6—C7 94.2 (2)
C3—C4—C12—C25 −46.2 (4) C11—C6—C7—C8 0.8 (3)
N—C4—C12—C13 75.00 (19) C1—C6—C7—C8 −176.0 (2)
C3—C4—C12—C13 −169.51 (16) C6—C7—C8—C9 −1.3 (4)
N—C4—C12—C19 −168.5 (12) C7—C8—C9—C10 0.5 (4)
C3—C4—C12—C19 −53.1 (12) C8—C9—C10—C11 0.7 (4)
O—C12—C25—C30 −164.1 (6) C7—C6—C11—C10 0.4 (3)
C13—C12—C25—C30 77.5 (7) C1—C6—C11—C10 177.2 (2)
C4—C12—C25—C30 −48.4 (8) C9—C10—C11—C6 −1.2 (4)
C19—C12—C25—C30 −10 (7) O—C12—C19—C24 −161 (3)
O—C12—C25—C26 14.7 (7) C25—C12—C19—C24 172 (10)
C13—C12—C25—C26 −103.7 (7) C13—C12—C19—C24 76 (3)
C4—C12—C25—C26 130.4 (6) C4—C12—C19—C24 −45 (3)
C19—C12—C25—C26 169 (8) O—C12—C19—C20 28 (3)
C30—C25—C26—C27 −2.0 (11) C25—C12—C19—C20 1(6)
C12—C25—C26—C27 179.2 (6) C13—C12—C19—C20 −95 (2)
C25—C26—C27—C28 0.9 (10) C4—C12—C19—C20 144 (2)
C26—C27—C28—C29 −0.4 (7) C24—C19—C20—C21 9(5)
C27—C28—C29—C30 1.0 (7) C12—C19—C20—C21 179 (2)
C26—C25—C30—C29 2.6 (11) C19—C20—C21—C22 −6(4)
C12—C25—C30—C29 −178.5 (5) C20—C21—C22—C23 2(4)
C28—C29—C30—C25 −2.2 (9) C21—C22—C23—C24 0(4)
O—C12—C13—C18 174.73 (17) C20—C19—C24—C23 −7(5)
C25—C12—C13—C18 −69.8 (3) C12—C19—C24—C23 −176 (2)
C4—C12—C13—C18 56.5 (2) C22—C23—C24—C19 2(4)
C19—C12—C13—C18 −58.7 (10)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C11 ring.
D—H···A D—H H···A D···A D—H···A
O—H1O···N 0.84 2.02 2.648 (2) 132
C28—H28···Oi 0.95 2.78 3.359 (7) 120
C17—H17···Cgii 0.95 2.92 3.776 (3) 150

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5054).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Moro, A. V., Tiekink, E. R. T., Zukerman-Schpector, J., Lüdtke, D. S. & Correia, C. R. D. (2010). Eur. J. Org. Chem. pp. 3696–3703.
  8. Paixão, M. W., Braga, A. L. & Lüdtke, D. S. (2008). J. Braz. Chem. Soc. 19, 813–830.
  9. Shabbir, S. H., Joyce, L. A., da Cruz, G. M., Lynch, V. M., Sorey, S. & Anslyn, E. V. (2009). J. Am. Chem. Soc. 131, 13125–13131. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Taylor, J. G., Moro, A. V. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 1403–1428.
  12. Walsh, P. J. & Kozlowski, M. C. (2008). Fundamentals of Asymmetric Catalysis Sausalito, CA: University Science Books Sausalito.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Yoon, T. P. & Jacobsen, E. N. (2003). Science, 299, 1691–1693. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023403/hg5054sup1.cif

e-67-o1807-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023403/hg5054Isup2.hkl

e-67-o1807-Isup2.hkl (108.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES