Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):m909. doi: 10.1107/S1600536811021799

Bis[2-(1H-imidazol-2-yl-κN 3)-1H-imidazol-3-ium]silver(I) trinitrate

Shelonda R Finch a, Johnathan P Harper a, Amitava Choudhury a, Ekkehard Sinn b, Harvest L Collier a,*
PMCID: PMC3151805  PMID: 21836895

Abstract

The synthesis of the title salt, [Ag(C6H7N4)2](NO3)3, was carried out employing a 1:2 molar ratio of 2,2′-biimidazole and silver nitrate respectively. The cation has crystallographically-imposed C2 symmetry with the metal atom in an almost linear coordination environment [N—Ag—N = 177.01 (17)°]. The crystal structure displays N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

The synthesis of the complex is described by Hester et al. (1997). 2,2′-Biimidazole was prepared in a manner similar to Debus (1858).graphic file with name e-67-0m909-scheme1.jpg

Experimental

Crystal data

  • [Ag(C6H7N4)2](NO3)3

  • M r = 564.21

  • Monoclinic, Inline graphic

  • a = 24.095 (6) Å

  • b = 12.037 (3) Å

  • c = 6.8262 (18) Å

  • β = 91.319 (6)°

  • V = 1979.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.735, T max = 0.811

  • 9412 measured reflections

  • 2275 independent reflections

  • 1723 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.104

  • S = 0.99

  • 2275 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021799/mw2006sup1.cif

e-67-0m909-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021799/mw2006Isup2.hkl

e-67-0m909-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4i 0.86 1.94 2.792 (4) 173
N3—H3⋯O1ii 0.86 1.92 2.765 (4) 166
N4—H4⋯O4 0.86 1.93 2.758 (4) 160
C1—H1⋯O3ii 0.93 2.49 3.179 (5) 131
C2—H2⋯O5iii 0.93 2.60 3.331 (5) 136
C5—H5⋯O3iv 0.93 2.55 3.340 (6) 144
C6—H6⋯O2v 0.93 2.55 3.376 (6) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

The compound, silver bis (1H-imidazolium) trinitrate [Ag(biimH)2(NO3)3] crystallizes in the monoclinic crystal system in space group C2/c. The Ag atom is coordinated to N atoms on two different 2,2'-biimidazole entities in an almost linear geometry where the biimidazole acts as a monodentate ligand. The Ag—N distance is 2.118 (3) Å and the N—Ag—N bond angle is 177.01 (17)°. There are one and one half crystallographically independent nitrate anions in the asymmetric unit (Figure 1). The nearest contacts of Ag with O atoms from one of the nitrate groups are in the range 3.026 (3)–3.070 (3) Å. The other nitrate is hydrogen-bonded to the other side of the uncoordinated ring of 2,2'-bimidazole (Figure 2). The two imidazole rings in 2,2'-biimidazole are no longer in one plane when coordinated to Ag as in [Ag(biimH)2(NO3)3] but are twisted with a N1—C3—C4—N4 torsion angle of 33.5 (6)°. A very similar torsion angle [34.30 (7)°] has been observed in another silver complex of 2,2'-biimidazole (Hester et al. (1997)) where such a torsion angle between the imidazole rings is responsible for the helicity of the complex. However, in contrast to the present structure, in the Ag-biimidazole complex reported by Hester the biimidazole binds to Ag atoms in a bis-monodentate fashion bridging two Ag atoms with a very close Ag—Ag contact distance of 3.003 (3)Å and an N—Ag—N bond angle of 162.36 (2)°. This contrasts with the nearest Ag—Ag contact distance in the present complex which is considerably greater at 3.5473 (9) Å.

Experimental

2,2'-Biimidazole was prepared in a manner similar to Debus (1858), using equal portions of 40% glyoxal and concentrated ammonium hydroxide (28–30%). Silver nitrate was used as received and concentrated nitric acid was diluted to 0.1 M. The synthesis of silver bis(1H-imidazolium) trinitrate used a procedure similar to that reported by Hester et al. (1997), using 0.1 M HNO3. A mass of 1.343 g (1.001 x 10 -2 mol) of 2,2'-biimidazole was dissolved in 15 ml of 0.1M HNO3 using heat. Silver nitrate (3.410 g, 2.007 x 10 -2 mol) was then added to the solution as a solid. A precipitate formed upon mixing and a few drops of 0.1 M HNO3 were added to resolubilize the precipitate. Colourless crystals formed as the solution was allowed to slowly evaporate.

Refinement

Hydrogen atoms were placed geometrically and held in the riding mode during the final refinement. C—H = 0.93 Å with Uiso (H) = 1.2Ueq(C) and N—H = 0.86 Å with Uiso (H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of silver bis(1H-imidazolium) trinitrate. Thermal ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of silver bis(1H-imidazolium) trinitrate shown along the c-axis. Dotted lines indicate N—H···O and C—H···O hydrogen-bonding interactions.

Crystal data

[Ag(C6H7N4)2](NO3)3 F(000) = 1128
Mr = 564.21 Dx = 1.893 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2422 reflections
a = 24.095 (6) Å θ = 3.1–24.0°
b = 12.037 (3) Å µ = 1.09 mm1
c = 6.8262 (18) Å T = 298 K
β = 91.319 (6)° Needle, colourless
V = 1979.3 (9) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2275 independent reflections
Radiation source: fine-focus sealed tube 1723 reflections with I > 2σ(I)
graphite Rint = 0.065
ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −31→31
Tmin = 0.735, Tmax = 0.811 k = −15→15
9412 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3
2275 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.5000 0.45986 (4) 0.2500 0.04700 (17)
N1 0.58789 (12) 0.4553 (3) 0.2547 (4) 0.0405 (7)
C1 0.61871 (16) 0.5520 (3) 0.2559 (6) 0.0459 (9)
H1 0.6044 0.6235 0.2442 0.055*
C2 0.67332 (17) 0.5259 (3) 0.2768 (6) 0.0510 (10)
H2 0.7029 0.5755 0.2832 0.061*
N2 0.67642 (13) 0.4139 (3) 0.2867 (5) 0.0468 (8)
H2N 0.7063 0.3753 0.2994 0.056*
C3 0.62405 (14) 0.3734 (3) 0.2730 (5) 0.0379 (8)
C4 0.61183 (14) 0.2557 (3) 0.2817 (5) 0.0378 (8)
N3 0.57064 (13) 0.2026 (3) 0.1904 (5) 0.0440 (8)
H3 0.5456 0.2331 0.1165 0.053*
C6 0.57421 (18) 0.0915 (3) 0.2320 (6) 0.0527 (10)
H6 0.5506 0.0358 0.1856 0.063*
C5 0.6184 (2) 0.0791 (4) 0.3527 (7) 0.0590 (12)
H5 0.6310 0.0126 0.4068 0.071*
N4 0.64157 (14) 0.1813 (3) 0.3822 (5) 0.0487 (8)
H4 0.6706 0.1952 0.4538 0.058*
O1 0.50331 (14) 0.6989 (3) 0.4067 (5) 0.0721 (10)
N5 0.5000 0.7527 (5) 0.2500 0.0511 (12)
O2 0.5000 0.8540 (4) 0.2500 0.0879 (16)
O3 0.64511 (13) 0.1930 (3) 0.8363 (5) 0.0738 (10)
N6 0.69447 (15) 0.1706 (3) 0.8314 (6) 0.0541 (9)
O4 0.72151 (11) 0.1948 (3) 0.6770 (4) 0.0579 (8)
O5 0.71807 (15) 0.1225 (4) 0.9651 (5) 0.0968 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0336 (2) 0.0475 (3) 0.0597 (3) 0.000 −0.00185 (17) 0.000
N1 0.0385 (16) 0.0417 (17) 0.0412 (17) −0.0022 (14) −0.0010 (13) 0.0016 (14)
C1 0.047 (2) 0.042 (2) 0.049 (2) −0.0031 (17) 0.0005 (17) −0.0007 (18)
C2 0.048 (2) 0.053 (3) 0.052 (2) −0.0141 (19) −0.0009 (18) 0.002 (2)
N2 0.0330 (16) 0.056 (2) 0.051 (2) −0.0003 (14) −0.0034 (14) 0.0038 (16)
C3 0.0326 (17) 0.045 (2) 0.0365 (19) 0.0007 (15) −0.0030 (14) −0.0024 (16)
C4 0.0351 (18) 0.042 (2) 0.036 (2) 0.0031 (15) 0.0022 (15) 0.0011 (16)
N3 0.0427 (18) 0.0475 (19) 0.0416 (18) −0.0023 (14) −0.0009 (14) −0.0004 (14)
C6 0.061 (3) 0.042 (2) 0.056 (3) −0.006 (2) 0.016 (2) −0.007 (2)
C5 0.071 (3) 0.041 (2) 0.066 (3) 0.008 (2) 0.012 (2) 0.007 (2)
N4 0.0499 (19) 0.049 (2) 0.047 (2) 0.0066 (15) −0.0035 (15) 0.0055 (16)
O1 0.090 (2) 0.073 (2) 0.0526 (19) −0.0163 (19) −0.0198 (17) 0.0118 (16)
N5 0.047 (3) 0.052 (3) 0.054 (3) 0.000 −0.005 (2) 0.000
O2 0.095 (4) 0.046 (3) 0.122 (5) 0.000 −0.009 (3) 0.000
O3 0.053 (2) 0.078 (2) 0.091 (3) 0.0165 (17) 0.0225 (17) 0.0085 (19)
N6 0.049 (2) 0.054 (2) 0.059 (2) 0.0017 (17) 0.0028 (18) 0.0014 (18)
O4 0.0448 (16) 0.076 (2) 0.0532 (18) 0.0034 (14) 0.0059 (13) 0.0107 (15)
O5 0.074 (2) 0.149 (4) 0.067 (2) 0.007 (3) −0.0109 (19) 0.039 (2)

Geometric parameters (Å, °)

Ag1—N1i 2.118 (3) N3—C6 1.370 (5)
Ag1—N1 2.118 (3) N3—H3 0.8600
N1—C3 1.319 (4) C6—C5 1.340 (6)
N1—C1 1.381 (5) C6—H6 0.9300
C1—C2 1.357 (6) C5—N4 1.365 (5)
C1—H1 0.9300 C5—H5 0.9300
C2—N2 1.351 (5) N4—H4 0.8600
C2—H2 0.9300 O1—N5 1.251 (4)
N2—C3 1.354 (5) N5—O2 1.220 (7)
N2—H2N 0.8600 N5—O1i 1.251 (4)
C3—C4 1.449 (5) O3—N6 1.221 (4)
C4—N3 1.324 (5) N6—O5 1.211 (5)
C4—N4 1.328 (5) N6—O4 1.285 (4)
N1i—Ag1—N1 177.01 (17) C4—N3—C6 109.3 (3)
C3—N1—C1 106.0 (3) C4—N3—H3 125.3
C3—N1—Ag1 132.8 (2) C6—N3—H3 125.3
C1—N1—Ag1 121.0 (2) C5—C6—N3 106.4 (4)
C2—C1—N1 109.0 (4) C5—C6—H6 126.8
C2—C1—H1 125.5 N3—C6—H6 126.8
N1—C1—H1 125.5 C6—C5—N4 107.8 (4)
N2—C2—C1 106.8 (4) C6—C5—H5 126.1
N2—C2—H2 126.6 N4—C5—H5 126.1
C1—C2—H2 126.6 C4—N4—C5 108.6 (3)
C2—N2—C3 107.8 (3) C4—N4—H4 125.7
C2—N2—H2N 126.1 C5—N4—H4 125.7
C3—N2—H2N 126.1 O2—N5—O1i 121.2 (3)
N1—C3—N2 110.5 (3) O2—N5—O1 121.2 (3)
N1—C3—C4 126.9 (3) O1i—N5—O1 117.6 (5)
N2—C3—C4 122.6 (3) O5—N6—O3 121.7 (4)
N3—C4—N4 107.9 (3) O5—N6—O4 119.2 (4)
N3—C4—C3 127.1 (3) O3—N6—O4 119.0 (4)
N4—C4—C3 125.0 (3)
C3—N1—C1—C2 −0.5 (4) N2—C3—C4—N3 −147.8 (4)
Ag1—N1—C1—C2 174.5 (3) N1—C3—C4—N4 −148.0 (4)
N1—C1—C2—N2 0.6 (5) N2—C3—C4—N4 30.8 (6)
C1—C2—N2—C3 −0.4 (4) N4—C4—N3—C6 −0.4 (4)
C1—N1—C3—N2 0.3 (4) C3—C4—N3—C6 178.3 (4)
Ag1—N1—C3—N2 −173.9 (2) C4—N3—C6—C5 0.6 (5)
C1—N1—C3—C4 179.2 (4) N3—C6—C5—N4 −0.6 (5)
Ag1—N1—C3—C4 5.0 (6) N3—C4—N4—C5 0.0 (4)
C2—N2—C3—N1 0.0 (4) C3—C4—N4—C5 −178.7 (4)
C2—N2—C3—C4 −178.9 (3) C6—C5—N4—C4 0.3 (5)
N1—C3—C4—N3 33.5 (6)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O4ii 0.86 1.94 2.792 (4) 173
N3—H3···O1iii 0.86 1.92 2.765 (4) 166
N4—H4···O4 0.86 1.93 2.758 (4) 160
C1—H1···O3iii 0.93 2.49 3.179 (5) 131
C2—H2···O5iv 0.93 2.60 3.331 (5) 136
C5—H5···O3v 0.93 2.55 3.340 (6) 144
C6—H6···O2vi 0.93 2.55 3.376 (6) 148

Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+3/2, y+1/2, −z+3/2; (v) x, −y, z−1/2; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2006).

References

  1. Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2008). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Debus, H. (1858). Justus Liebigs Ann. Chem 107, 199–208.
  4. Hester, C. A., Collier, H. L. & Baughman, R. G. (1997). Polyhedron, 16, 2893–2895.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021799/mw2006sup1.cif

e-67-0m909-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021799/mw2006Isup2.hkl

e-67-0m909-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES