Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 22;67(Pt 7):o1760–o1761. doi: 10.1107/S160053681102352X

5,9-Dihy­droxy-9-methyl-3,6-dimethyl­ene-3a,4,5,6,6a,7,8,9,9a,9b-deca­hydro­azuleno[4,5-b]furan-2(3H)-one

Mohamed Moumou a,*, Ahmed Benharref a, Moha Berraho a, Lahcen El Ammari b, Mohamed Akssira c, Ahmed Elhakmaoui c
PMCID: PMC3151879  PMID: 21837142

Abstract

The title compound, C15H20O4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The seven-membered ring has a chair conformation, while the five-membered rings display twisted conformations. The dihedral angle between the seven-membered ring and the lactone ring is 21.69 (10)°. In the crystal, mol­ecules are linked into chains propagating along the c axis by inter­molecular O—H⋯O hydrogen bonds; an intra­molecular O—H⋯O link also occurs.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: El Haib et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o1760-scheme1.jpg

Experimental

Crystal data

  • C15H20O4

  • M r = 264.31

  • Orthorhombic, Inline graphic

  • a = 6.4210 (14) Å

  • b = 13.504 (3) Å

  • c = 15.619 (3) Å

  • V = 1354.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.33 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 14445 measured reflections

  • 1610 independent reflections

  • 1473 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.097

  • S = 1.08

  • 1610 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681102352X/sj5165sup1.cif

e-67-o1760-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102352X/sj5165Isup2.hkl

e-67-o1760-Isup2.hkl (77.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102352X/sj5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.42 3.015 (2) 131
O4—H4⋯O2i 0.82 2.03 2.819 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany, et al., 2004). In order to prepare products with high added value that can be used in the pharmacology and cosmetics industries, we have studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with methane sulfonic acid (MSA) or p-toluene sulfonic acid (PTSA) in dichloromethane (El Haib et al., 2011) led to 5,9-dihydroxy-9-methyl- 3,6-dimethylene-decahydro-azulene [4,5-b] furan-2-one with a yield of 45%. The molecule contains three fused rings which exhibit different conformations. The molecular structure of (I), Fig.1, shows the five membered rings to adopt a twisted conformations, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.233 (2) Å and φ = 121.1 (5)° for the lactone ring and Q = 0.426 (2) Å, φ = 264.5 (3)° for the other five-membered ring. The seven-membered ring has a chair conformation with QT = 0.8255 (20) Å, θ2 = 36.20 (15)°, φ2 = 89.3 (2)° and φ3 =207.07 (18). In the crystal structure, molecules are linked into chains (Fig. 2) running along the c axis by intermolecular O4—H2···O3 hydrogen bonds. In addition an intramolecular O2—H2···O3 hydrogen bond is also observed.

Experimental

Methane sulfonic acid (MSA) or p-toluene sulfonic acid (PTSA) (6x10-2mmol) was added to a stirred solution of 9α-hydroxyparthenolide (1 g, 4 mmol) in dichloromethane (10 ml). The reaction mixture is left stirring for two hours at room temperature. After completion of the reaction, a saturated solution of NaHCO3 was added and the resulting mixture is extracted three times (3x20mL) with dichloromethane. The organic phases are combined and dried over Na2SO4 and evaporated under vacuum. Chromatography of the residue obtained on a column of silica gel eluting with hexane - ethyl acetate (40/60) allowed the isolation of pure 5,9-dihydroxy-9-methyl- 3,6-dimethylene-decahydro-azulene [4,5-b] furan-2-one (446 mg, 1.80 mmol). The title compound was recrystallized from its ethyl acetate solution.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1148 Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: Partial packing view showing the O –H···O interactions (dashed lines) and the formation of a chain parallel to the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x - 1/2,-y,+z + 1/2].

Crystal data

C15H20O4 F(000) = 568
Mr = 264.31 Dx = 1.296 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 14445 reflections
a = 6.4210 (14) Å θ = 2–26.4°
b = 13.504 (3) Å µ = 0.09 mm1
c = 15.619 (3) Å T = 298 K
V = 1354.4 (5) Å3 Platelet, colourless
Z = 4 0.50 × 0.33 × 0.08 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 1473 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.051
graphite θmax = 26.4°, θmin = 2.0°
φ and ω scans h = −8→8
14445 measured reflections k = −16→16
1610 independent reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1199P] where P = (Fo2 + 2Fc2)/3
1610 reflections (Δ/σ)max = 0.002
175 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C13 0.5094 (4) 0.2383 (2) 0.65504 (15) 0.0622 (7)
H13A 0.6162 0.2666 0.6231 0.075*
H13B 0.5024 0.2493 0.7138 0.075*
C14 0.0186 (5) −0.14917 (17) 0.73734 (18) 0.0636 (7)
H14A −0.0277 −0.2020 0.7042 0.076*
H14B 0.1063 −0.1606 0.7837 0.076*
C15 0.0444 (4) −0.12759 (19) 0.47662 (17) 0.0613 (7)
H15A 0.0015 −0.1705 0.4309 0.092*
H15B 0.0570 −0.1652 0.5285 0.092*
H15C 0.1764 −0.0984 0.4627 0.092*
C1 −0.1819 (3) −0.02941 (14) 0.64505 (12) 0.0357 (4)
H1 −0.2819 0.0185 0.6681 0.043*
C2 −0.0403 (3) −0.05775 (15) 0.71848 (12) 0.0398 (5)
C3 0.0356 (4) 0.02616 (16) 0.77685 (13) 0.0459 (5)
H3 0.0753 −0.0028 0.8320 0.055*
C4 0.2238 (4) 0.08094 (17) 0.74103 (12) 0.0434 (5)
H4A 0.3401 0.0353 0.7378 0.052*
H4B 0.2619 0.1334 0.7805 0.052*
C5 0.1881 (3) 0.12596 (13) 0.65264 (11) 0.0318 (4)
H5 0.0665 0.1697 0.6553 0.038*
C6 0.1518 (3) 0.04783 (12) 0.58217 (11) 0.0293 (4)
H6 0.2284 −0.0126 0.5967 0.035*
C7 −0.0736 (3) 0.02223 (12) 0.56617 (11) 0.0299 (4)
H7 −0.1476 0.0845 0.5557 0.036*
C8 −0.1172 (3) −0.04621 (14) 0.48887 (12) 0.0379 (4)
C9 −0.3311 (4) −0.08880 (16) 0.51157 (14) 0.0466 (5)
H9A −0.4401 −0.0403 0.5022 0.056*
H9B −0.3610 −0.1474 0.4779 0.056*
C10 −0.3114 (4) −0.11414 (17) 0.60591 (14) 0.0514 (6)
H10A −0.2413 −0.1772 0.6134 0.062*
H10B −0.4476 −0.1178 0.6326 0.062*
C11 0.3685 (3) 0.18293 (14) 0.61722 (12) 0.0369 (4)
C12 0.3756 (3) 0.16406 (15) 0.52329 (12) 0.0387 (5)
O1 0.4807 (3) 0.20235 (13) 0.46923 (10) 0.0620 (5)
O2 −0.1301 (3) 0.00763 (13) 0.40985 (9) 0.0566 (5)
H2 −0.0522 0.0557 0.4118 0.085*
O3 0.2403 (2) 0.09088 (10) 0.50419 (7) 0.0362 (3)
O4 −0.1222 (3) 0.09798 (12) 0.79206 (10) 0.0573 (5)
H4 −0.2162 0.0730 0.8203 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C13 0.0621 (16) 0.0839 (17) 0.0406 (11) −0.0351 (15) −0.0006 (12) −0.0034 (12)
C14 0.0740 (17) 0.0480 (12) 0.0688 (16) −0.0014 (13) −0.0178 (15) 0.0204 (12)
C15 0.0588 (15) 0.0567 (13) 0.0685 (15) −0.0020 (13) 0.0073 (13) −0.0282 (13)
C1 0.0348 (10) 0.0377 (9) 0.0347 (9) −0.0005 (8) 0.0039 (8) 0.0039 (7)
C2 0.0418 (11) 0.0429 (10) 0.0347 (9) −0.0039 (9) 0.0016 (9) 0.0100 (8)
C3 0.0584 (13) 0.0511 (11) 0.0283 (8) −0.0074 (11) 0.0002 (9) 0.0092 (8)
C4 0.0480 (12) 0.0531 (11) 0.0292 (9) −0.0102 (10) −0.0060 (9) 0.0037 (9)
C5 0.0326 (9) 0.0346 (8) 0.0283 (8) −0.0027 (8) −0.0017 (8) 0.0018 (7)
C6 0.0300 (9) 0.0315 (8) 0.0263 (8) −0.0003 (7) −0.0007 (7) 0.0036 (7)
C7 0.0325 (9) 0.0270 (8) 0.0301 (8) 0.0001 (7) −0.0023 (7) 0.0016 (7)
C8 0.0394 (11) 0.0406 (10) 0.0338 (9) −0.0087 (9) −0.0016 (9) −0.0016 (8)
C9 0.0423 (11) 0.0463 (11) 0.0511 (12) −0.0115 (10) −0.0062 (10) −0.0023 (10)
C10 0.0473 (12) 0.0564 (12) 0.0505 (12) −0.0189 (11) −0.0014 (10) 0.0076 (10)
C11 0.0365 (11) 0.0393 (9) 0.0348 (9) −0.0051 (8) −0.0011 (8) 0.0024 (8)
C12 0.0385 (11) 0.0425 (10) 0.0350 (9) −0.0077 (9) 0.0004 (9) 0.0033 (8)
O1 0.0665 (11) 0.0793 (12) 0.0403 (8) −0.0341 (10) 0.0092 (8) 0.0057 (8)
O2 0.0708 (11) 0.0656 (10) 0.0333 (7) −0.0277 (9) −0.0134 (7) 0.0038 (7)
O3 0.0387 (7) 0.0427 (7) 0.0273 (6) −0.0079 (6) 0.0026 (6) 0.0006 (5)
O4 0.0700 (11) 0.0567 (9) 0.0453 (8) −0.0069 (9) 0.0244 (9) −0.0022 (7)

Geometric parameters (Å, °)

C13—C11 1.314 (3) C5—C11 1.497 (3)
C13—H13A 0.9300 C5—C6 1.542 (2)
C13—H13B 0.9300 C5—H5 0.9800
C14—C2 1.324 (3) C6—O3 1.464 (2)
C14—H14A 0.9300 C6—C7 1.509 (3)
C14—H14B 0.9300 C6—H6 0.9800
C15—C8 1.523 (3) C7—C8 1.546 (2)
C15—H15A 0.9600 C7—H7 0.9800
C15—H15B 0.9600 C8—O2 1.435 (2)
C15—H15C 0.9600 C8—C9 1.530 (3)
C1—C2 1.513 (3) C9—C10 1.518 (3)
C1—C10 1.541 (3) C9—H9A 0.9700
C1—C7 1.577 (2) C9—H9B 0.9700
C1—H1 0.9800 C10—H10A 0.9700
C2—C3 1.534 (3) C10—H10B 0.9700
C3—O4 1.423 (3) C11—C12 1.490 (3)
C3—C4 1.523 (3) C12—O1 1.198 (2)
C3—H3 0.9800 C12—O3 1.349 (2)
C4—C5 1.526 (2) O2—H2 0.8200
C4—H4A 0.9700 O4—H4 0.8200
C4—H4B 0.9700
C11—C13—H13A 120.0 O3—C6—C7 109.01 (14)
C11—C13—H13B 120.0 O3—C6—C5 105.27 (13)
H13A—C13—H13B 120.0 C7—C6—C5 114.82 (15)
C2—C14—H14A 120.0 O3—C6—H6 109.2
C2—C14—H14B 120.0 C7—C6—H6 109.2
H14A—C14—H14B 120.0 C5—C6—H6 109.2
C8—C15—H15A 109.5 C6—C7—C8 116.10 (15)
C8—C15—H15B 109.5 C6—C7—C1 113.26 (15)
H15A—C15—H15B 109.5 C8—C7—C1 105.42 (14)
C8—C15—H15C 109.5 C6—C7—H7 107.2
H15A—C15—H15C 109.5 C8—C7—H7 107.2
H15B—C15—H15C 109.5 C1—C7—H7 107.2
C2—C1—C10 115.94 (17) O2—C8—C15 107.27 (18)
C2—C1—C7 116.03 (16) O2—C8—C9 109.74 (17)
C10—C1—C7 104.85 (15) C15—C8—C9 111.66 (17)
C2—C1—H1 106.4 O2—C8—C7 112.29 (14)
C10—C1—H1 106.4 C15—C8—C7 113.96 (17)
C7—C1—H1 106.4 C9—C8—C7 101.90 (16)
C14—C2—C1 125.2 (2) C10—C9—C8 103.59 (18)
C14—C2—C3 117.8 (2) C10—C9—H9A 111.0
C1—C2—C3 117.04 (16) C8—C9—H9A 111.0
O4—C3—C4 107.17 (17) C10—C9—H9B 111.0
O4—C3—C2 112.13 (18) C8—C9—H9B 111.0
C4—C3—C2 113.11 (17) H9A—C9—H9B 109.0
O4—C3—H3 108.1 C9—C10—C1 105.22 (17)
C4—C3—H3 108.1 C9—C10—H10A 110.7
C2—C3—H3 108.1 C1—C10—H10A 110.7
C3—C4—C5 113.99 (17) C9—C10—H10B 110.7
C3—C4—H4A 108.8 C1—C10—H10B 110.7
C5—C4—H4A 108.8 H10A—C10—H10B 108.8
C3—C4—H4B 108.8 C13—C11—C12 121.3 (2)
C5—C4—H4B 108.8 C13—C11—C5 131.25 (19)
H4A—C4—H4B 107.6 C12—C11—C5 107.44 (16)
C11—C5—C4 115.01 (16) O1—C12—O3 121.53 (18)
C11—C5—C6 101.82 (14) O1—C12—C11 129.6 (2)
C4—C5—C6 113.31 (15) O3—C12—C11 108.86 (16)
C11—C5—H5 108.8 C8—O2—H2 109.5
C4—C5—H5 108.8 C12—O3—C6 110.91 (13)
C6—C5—H5 108.8 C3—O4—H4 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.82 2.42 3.015 (2) 131
O4—H4···O2i 0.82 2.03 2.819 (2) 162

Symmetry codes: (i) −x−1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5165).

References

  1. Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405. [DOI] [PubMed]
  2. Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.
  3. Bruker, (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. El Haib, A., Benharref, A., Sandra, P.-M., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.
  6. El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681102352X/sj5165sup1.cif

e-67-o1760-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102352X/sj5165Isup2.hkl

e-67-o1760-Isup2.hkl (77.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102352X/sj5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES