Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1674. doi: 10.1107/S1600536811021507

2-((E)-{(S)-(6-Meth­oxy­quinolin-4-yl)[(2S)-8-vinyl­quinuclidin-2-yl]methyl­imino}­meth­yl)phenol

Yu Wei a, Wei He a,*
PMCID: PMC3151908  PMID: 21837073

Abstract

The title compound, C27H29N3O2, adopts an E configuration with respect to the C=N bond. The molecular structure is stabilized by inter­molecular O—H⋯N inter­actions between a hy­droxy H atom and the N atom on the quinoline ring.

Related literature

For literature on the preparation of Schiff base compounds, see: Jennings & Lovely (1991); Yoon & Jacobsen (2005). For the uses of Schiff base compounds, see: Yin et al. (2004). For the crystal structures of Schiff base compounds, see: Zhu (2011); Xie et al. (2010). For reference bond values, see: Jones (1986); Hooft et al. (2008). For information on the absolute structure of the title compound, see: Brunner et al. (1995); He et al. (2006).graphic file with name e-67-o1674-scheme1.jpg

Experimental

Crystal data

  • C27H29N3O2

  • M r = 427.53

  • Orthorhombic, Inline graphic

  • a = 8.9285 (15) Å

  • b = 11.6759 (19) Å

  • c = 21.939 (4) Å

  • V = 2287.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.29 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.973, T max = 0.987

  • 11474 measured reflections

  • 2339 independent reflections

  • 2098 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.05

  • 2339 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021507/jh2284sup1.cif

e-67-o1674-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021507/jh2284Isup2.hkl

e-67-o1674-Isup2.hkl (115KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021507/jh2284Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.605 (2) 148

Acknowledgments

The authors thank the Natural Science Foundation of China (grant No. 21072228) for financial support.

supplementary crystallographic information

Comment

In recent years, considerable attention has been focused on the Schiff-base ligands, e.g. as organocatalysts or ligands of metal complexes in asymmetric reactions; as biological active compounds owing to their anti-tumour abilities (Yin et al., 2004). We report here the crystal structure of the title Schiff-base compound (Fig. 1).

The molecule of the compound adopts an E configuration with respect to the C═N bond. The dihedral angle between the quinoline ring and the part of spirane C8C18C24 is 63.06°. The dihedral angle between benzene ring and quinoline ring is 65.20°. And it is 54.46° between benzene ring and the spirane part C8C18C24. All the bond lengths are within normal values (Jones, 1986; Hooft et al., 2008), and are comparable with those in the similar Cinchona alkaloid-derived Schiff base compounds as cited above (Zhu, 2011; Xie et al., 2010). The molecular conformation is stabilized by O—H···N interactions (Table 1).

Experimental

Salicylaldehyde (0.24 ml, 2.3 mmol) and 9-amino-(9-deoxy)-epiquinine (0.513 g, 1.588 mmol) in toluene (40 ml) was heated to reflux. After that, two scoops of Al2O3 (about 1.5 g, dried at 110 °C for two hours before use) were added to the solution. And then added one more scoop each hour. After four hours, the temperature was slowly cooling down to room temperature. Then the mixture was filtrated and the residue was washed with Et2O. The combined organic layers were removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/methanol/Et3N 30/1/1) to afford Schiff base compound 1 b (570 mg, 84% yield) as a yellow solid. HRMS (ESI, M+H) calcd for C27H30N3O2 428.2338, found 428.2333.

Refinement

All H atoms were placed in their calculated positions and then refined using the riding model approximation, with C—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3), and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C27).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound.

Crystal data

C27H29N3O2 Dx = 1.242 Mg m3
Mr = 427.53 Melting point: 438(1) K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
a = 8.9285 (15) Å Cell parameters from 4474 reflections
b = 11.6759 (19) Å θ = 2.5–27.8°
c = 21.939 (4) Å µ = 0.08 mm1
V = 2287.1 (7) Å3 T = 296 K
Z = 4 Block, yellow
F(000) = 912 0.35 × 0.29 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer 2339 independent reflections
Radiation source: fine-focus sealed tube 2098 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→10
Tmin = 0.973, Tmax = 0.987 k = −13→12
11474 measured reflections l = −26→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2035P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2339 reflections Δρmax = 0.10 e Å3
292 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0073 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.41218 (19) 0.89212 (15) 0.85006 (7) 0.0446 (4)
N2 0.2454 (2) 1.09111 (16) 0.66032 (9) 0.0596 (5)
N3 0.7031 (2) 0.98276 (17) 0.88131 (7) 0.0534 (5)
O1 0.2162 (2) 0.92618 (13) 0.93612 (7) 0.0639 (4)
H1 0.2749 0.9431 0.9088 0.096*
O2 0.6132 (2) 0.73226 (15) 0.59318 (7) 0.0676 (5)
C1 0.2036 (2) 0.81020 (19) 0.93959 (8) 0.0478 (5)
C2 0.1042 (3) 0.7639 (2) 0.98102 (10) 0.0648 (7)
H2 0.0469 0.8116 1.0057 0.078*
C3 0.0903 (3) 0.6468 (2) 0.98559 (11) 0.0714 (7)
H3 0.0236 0.6159 1.0137 0.086*
C4 0.1735 (3) 0.5744 (2) 0.94915 (11) 0.0706 (7)
H4 0.1627 0.4954 0.9524 0.085*
C5 0.2728 (3) 0.62049 (19) 0.90787 (11) 0.0578 (6)
H5 0.3295 0.5720 0.8834 0.069*
C6 0.2897 (2) 0.73866 (18) 0.90213 (8) 0.0443 (5)
C7 0.3947 (2) 0.78523 (18) 0.85793 (9) 0.0446 (5)
H7 0.4513 0.7348 0.8345 0.054*
C8 0.5154 (2) 0.93012 (18) 0.80204 (8) 0.0425 (5)
H8 0.5719 0.8644 0.7865 0.051*
C9 0.4216 (2) 0.98194 (16) 0.75096 (8) 0.0413 (4)
C10 0.3234 (2) 1.06841 (19) 0.76429 (10) 0.0518 (5)
H10 0.3131 1.0932 0.8043 0.062*
C11 0.2389 (3) 1.1196 (2) 0.71834 (12) 0.0573 (6)
H11 0.1733 1.1779 0.7294 0.069*
C12 0.3404 (2) 1.00365 (19) 0.64556 (10) 0.0494 (5)
C13 0.3487 (3) 0.9714 (2) 0.58382 (10) 0.0596 (6)
H13 0.2916 1.0107 0.5552 0.071*
C14 0.4382 (3) 0.8840 (2) 0.56510 (9) 0.0601 (6)
H14 0.4423 0.8643 0.5241 0.072*
C15 0.5242 (2) 0.82375 (19) 0.60786 (9) 0.0495 (5)
C16 0.5222 (2) 0.85392 (18) 0.66807 (9) 0.0458 (5)
H16 0.5816 0.8140 0.6957 0.055*
C17 0.4310 (2) 0.94490 (17) 0.68904 (8) 0.0410 (4)
C18 0.6243 (2) 1.02128 (19) 0.82638 (8) 0.0465 (5)
H18 0.5647 1.0885 0.8377 0.056*
C19 0.7364 (3) 1.0596 (2) 0.77607 (10) 0.0639 (7)
H19A 0.7236 1.0129 0.7399 0.077*
H19B 0.7184 1.1390 0.7652 0.077*
C20 0.8952 (3) 1.0458 (2) 0.80107 (11) 0.0639 (6)
H20 0.9683 1.0689 0.7701 0.077*
C21 0.9177 (3) 0.9201 (2) 0.81741 (14) 0.0804 (8)
H21A 1.0195 0.9076 0.8313 0.096*
H21B 0.9003 0.8724 0.7819 0.096*
C22 0.8070 (3) 0.8886 (2) 0.86801 (12) 0.0674 (7)
H22A 0.7502 0.8216 0.8558 0.081*
H22B 0.8621 0.8693 0.9047 0.081*
C23 0.7916 (3) 1.0797 (2) 0.90419 (10) 0.0636 (6)
H23A 0.8376 1.0582 0.9426 0.076*
H23B 0.7251 1.1438 0.9119 0.076*
C24 0.9161 (3) 1.1181 (2) 0.85889 (11) 0.0603 (6)
H24 1.0135 1.0987 0.8768 0.072*
C25 0.9125 (3) 1.2447 (2) 0.84784 (13) 0.0727 (7)
H25 0.8233 1.2750 0.8330 0.087*
C26 1.0210 (4) 1.3160 (3) 0.85690 (14) 0.0932 (9)
H26A 1.1125 1.2899 0.8717 0.112*
H26B 1.0077 1.3935 0.8486 0.112*
C27 0.6104 (4) 0.6886 (3) 0.53269 (10) 0.0893 (9)
H27A 0.6449 0.7465 0.5050 0.134*
H27B 0.5099 0.6670 0.5222 0.134*
H27C 0.6746 0.6228 0.5300 0.134*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0486 (9) 0.0457 (10) 0.0395 (9) −0.0028 (8) 0.0046 (7) 0.0016 (7)
N2 0.0560 (11) 0.0516 (11) 0.0712 (13) 0.0021 (10) −0.0051 (10) 0.0136 (10)
N3 0.0598 (11) 0.0577 (11) 0.0426 (9) −0.0051 (10) −0.0053 (8) −0.0014 (8)
O1 0.0809 (11) 0.0513 (9) 0.0596 (9) 0.0002 (9) 0.0226 (9) −0.0035 (8)
O2 0.0864 (11) 0.0694 (11) 0.0469 (8) 0.0073 (10) 0.0076 (8) −0.0099 (8)
C1 0.0538 (12) 0.0507 (13) 0.0390 (10) −0.0019 (10) 0.0019 (10) 0.0014 (9)
C2 0.0707 (15) 0.0719 (17) 0.0517 (13) −0.0034 (14) 0.0177 (12) 0.0014 (12)
C3 0.0781 (17) 0.0786 (18) 0.0574 (14) −0.0175 (15) 0.0167 (13) 0.0138 (13)
C4 0.0897 (18) 0.0547 (15) 0.0674 (15) −0.0137 (15) 0.0075 (14) 0.0125 (13)
C5 0.0679 (14) 0.0463 (13) 0.0591 (13) −0.0017 (12) 0.0074 (12) 0.0038 (11)
C6 0.0482 (11) 0.0473 (12) 0.0375 (9) −0.0018 (9) −0.0014 (9) 0.0036 (9)
C7 0.0479 (11) 0.0454 (12) 0.0405 (10) 0.0012 (10) 0.0033 (9) −0.0003 (9)
C8 0.0442 (10) 0.0453 (11) 0.0379 (9) −0.0011 (9) 0.0046 (8) 0.0007 (9)
C9 0.0408 (10) 0.0394 (10) 0.0438 (10) −0.0071 (9) 0.0025 (8) 0.0045 (9)
C10 0.0516 (12) 0.0479 (12) 0.0559 (12) 0.0017 (11) 0.0078 (10) 0.0002 (10)
C11 0.0530 (12) 0.0456 (12) 0.0734 (16) 0.0042 (11) 0.0064 (11) 0.0093 (11)
C12 0.0488 (11) 0.0470 (12) 0.0523 (12) −0.0088 (10) −0.0035 (10) 0.0095 (10)
C13 0.0674 (14) 0.0602 (14) 0.0510 (12) −0.0078 (13) −0.0152 (11) 0.0141 (11)
C14 0.0752 (15) 0.0676 (16) 0.0375 (11) −0.0139 (14) −0.0051 (11) 0.0019 (11)
C15 0.0566 (12) 0.0479 (12) 0.0441 (11) −0.0086 (11) 0.0055 (10) −0.0015 (9)
C16 0.0497 (11) 0.0465 (12) 0.0413 (10) −0.0045 (10) −0.0020 (9) 0.0030 (9)
C17 0.0401 (10) 0.0406 (11) 0.0422 (9) −0.0085 (8) −0.0010 (8) 0.0040 (9)
C18 0.0502 (11) 0.0476 (12) 0.0415 (10) −0.0052 (10) 0.0022 (9) −0.0005 (9)
C19 0.0603 (13) 0.0809 (17) 0.0504 (12) −0.0277 (14) 0.0008 (11) 0.0005 (13)
C20 0.0519 (12) 0.0726 (17) 0.0672 (14) −0.0130 (12) 0.0106 (11) −0.0142 (13)
C21 0.0683 (15) 0.0689 (18) 0.104 (2) −0.0005 (14) 0.0052 (16) −0.0314 (16)
C22 0.0717 (15) 0.0593 (15) 0.0713 (15) 0.0022 (13) −0.0193 (13) −0.0007 (12)
C23 0.0668 (14) 0.0665 (15) 0.0574 (13) −0.0067 (13) −0.0074 (12) −0.0147 (12)
C24 0.0481 (12) 0.0574 (14) 0.0755 (15) −0.0019 (11) −0.0123 (11) −0.0088 (12)
C25 0.0646 (15) 0.0635 (16) 0.0900 (19) 0.0015 (14) −0.0104 (14) −0.0072 (14)
C26 0.091 (2) 0.0693 (19) 0.119 (2) −0.0187 (18) −0.003 (2) −0.0112 (18)
C27 0.133 (3) 0.084 (2) 0.0506 (13) 0.006 (2) 0.0223 (16) −0.0132 (14)

Geometric parameters (Å, °)

N1—C7 1.269 (3) C13—C14 1.359 (3)
N1—C8 1.468 (2) C13—H13 0.9300
N2—C11 1.317 (3) C14—C15 1.402 (3)
N2—C12 1.367 (3) C14—H14 0.9300
N3—C18 1.466 (3) C15—C16 1.367 (3)
N3—C22 1.468 (3) C16—C17 1.415 (3)
N3—C23 1.468 (3) C16—H16 0.9300
O1—C1 1.361 (3) C18—C19 1.556 (3)
O1—H1 0.8200 C18—H18 0.9800
O2—C15 1.369 (3) C19—C20 1.529 (3)
O2—C27 1.422 (3) C19—H19A 0.9700
C1—C2 1.380 (3) C19—H19B 0.9700
C1—C6 1.401 (3) C20—C21 1.525 (4)
C2—C3 1.377 (4) C20—C24 1.535 (3)
C2—H2 0.9300 C20—H20 0.9800
C3—C4 1.381 (4) C21—C22 1.531 (4)
C3—H3 0.9300 C21—H21A 0.9700
C4—C5 1.377 (3) C21—H21B 0.9700
C4—H4 0.9300 C22—H22A 0.9700
C5—C6 1.394 (3) C22—H22B 0.9700
C5—H5 0.9300 C23—C24 1.558 (3)
C6—C7 1.455 (3) C23—H23A 0.9700
C7—H7 0.9300 C23—H23B 0.9700
C8—C9 1.524 (3) C24—C25 1.498 (4)
C8—C18 1.537 (3) C24—H24 0.9800
C8—H8 0.9800 C25—C26 1.293 (4)
C9—C10 1.369 (3) C25—H25 0.9300
C9—C17 1.428 (3) C26—H26A 0.9300
C10—C11 1.394 (3) C26—H26B 0.9300
C10—H10 0.9300 C27—H27A 0.9600
C11—H11 0.9300 C27—H27B 0.9600
C12—C13 1.408 (3) C27—H27C 0.9600
C12—C17 1.426 (3)
C7—N1—C8 118.14 (18) C16—C17—C12 118.01 (18)
C11—N2—C12 116.44 (19) C16—C17—C9 124.77 (17)
C18—N3—C22 111.69 (17) C12—C17—C9 117.22 (18)
C18—N3—C23 107.62 (18) N3—C18—C8 112.13 (17)
C22—N3—C23 107.80 (17) N3—C18—C19 111.27 (17)
C1—O1—H1 109.5 C8—C18—C19 111.09 (16)
C15—O2—C27 119.3 (2) N3—C18—H18 107.4
O1—C1—C2 118.6 (2) C8—C18—H18 107.4
O1—C1—C6 121.00 (18) C19—C18—H18 107.4
C2—C1—C6 120.4 (2) C20—C19—C18 108.15 (19)
C3—C2—C1 119.6 (2) C20—C19—H19A 110.1
C3—C2—H2 120.2 C18—C19—H19A 110.1
C1—C2—H2 120.2 C20—C19—H19B 110.1
C2—C3—C4 121.1 (2) C18—C19—H19B 110.1
C2—C3—H3 119.4 H19A—C19—H19B 108.4
C4—C3—H3 119.4 C21—C20—C19 107.9 (2)
C5—C4—C3 119.2 (2) C21—C20—C24 108.6 (2)
C5—C4—H4 120.4 C19—C20—C24 110.6 (2)
C3—C4—H4 120.4 C21—C20—H20 109.9
C4—C5—C6 121.1 (2) C19—C20—H20 109.9
C4—C5—H5 119.5 C24—C20—H20 109.9
C6—C5—H5 119.5 C20—C21—C22 108.5 (2)
C5—C6—C1 118.5 (2) C20—C21—H21A 110.0
C5—C6—C7 120.0 (2) C22—C21—H21A 110.0
C1—C6—C7 121.46 (19) C20—C21—H21B 110.0
N1—C7—C6 122.49 (19) C22—C21—H21B 110.0
N1—C7—H7 118.8 H21A—C21—H21B 108.4
C6—C7—H7 118.8 N3—C22—C21 111.8 (2)
N1—C8—C9 107.63 (15) N3—C22—H22A 109.2
N1—C8—C18 110.92 (15) C21—C22—H22A 109.2
C9—C8—C18 109.15 (16) N3—C22—H22B 109.2
N1—C8—H8 109.7 C21—C22—H22B 109.2
C9—C8—H8 109.7 H22A—C22—H22B 107.9
C18—C8—H8 109.7 N3—C23—C24 112.82 (18)
C10—C9—C17 117.65 (18) N3—C23—H23A 109.0
C10—C9—C8 119.18 (18) C24—C23—H23A 109.0
C17—C9—C8 123.17 (17) N3—C23—H23B 109.0
C9—C10—C11 120.6 (2) C24—C23—H23B 109.0
C9—C10—H10 119.7 H23A—C23—H23B 107.8
C11—C10—H10 119.7 C25—C24—C20 114.0 (2)
N2—C11—C10 124.5 (2) C25—C24—C23 111.8 (2)
N2—C11—H11 117.7 C20—C24—C23 106.36 (18)
C10—C11—H11 117.7 C25—C24—H24 108.2
N2—C12—C13 117.4 (2) C20—C24—H24 108.2
N2—C12—C17 123.57 (19) C23—C24—H24 108.2
C13—C12—C17 119.0 (2) C26—C25—C24 126.5 (3)
C14—C13—C12 121.5 (2) C26—C25—H25 116.8
C14—C13—H13 119.2 C24—C25—H25 116.8
C12—C13—H13 119.2 C25—C26—H26A 120.0
C13—C14—C15 119.8 (2) C25—C26—H26B 120.0
C13—C14—H14 120.1 H26A—C26—H26B 120.0
C15—C14—H14 120.1 O2—C27—H27A 109.5
C16—C15—O2 115.9 (2) O2—C27—H27B 109.5
C16—C15—C14 120.6 (2) H27A—C27—H27B 109.5
O2—C15—C14 123.51 (18) O2—C27—H27C 109.5
C15—C16—C17 121.0 (2) H27A—C27—H27C 109.5
C15—C16—H16 119.5 H27B—C27—H27C 109.5
C17—C16—H16 119.5
O1—C1—C2—C3 −179.6 (2) C15—C16—C17—C9 179.84 (19)
C6—C1—C2—C3 0.2 (4) N2—C12—C17—C16 178.52 (19)
C1—C2—C3—C4 −0.4 (4) C13—C12—C17—C16 −1.9 (3)
C2—C3—C4—C5 0.5 (4) N2—C12—C17—C9 −0.9 (3)
C3—C4—C5—C6 −0.4 (4) C13—C12—C17—C9 178.69 (19)
C4—C5—C6—C1 0.2 (3) C10—C9—C17—C16 −177.42 (18)
C4—C5—C6—C7 −179.6 (2) C8—C9—C17—C16 2.7 (3)
O1—C1—C6—C5 179.7 (2) C10—C9—C17—C12 1.9 (3)
C2—C1—C6—C5 −0.2 (3) C8—C9—C17—C12 −177.90 (17)
O1—C1—C6—C7 −0.5 (3) C22—N3—C18—C8 67.6 (2)
C2—C1—C6—C7 179.7 (2) C23—N3—C18—C8 −174.22 (17)
C8—N1—C7—C6 −176.87 (16) C22—N3—C18—C19 −57.5 (2)
C5—C6—C7—N1 178.6 (2) C23—N3—C18—C19 60.7 (2)
C1—C6—C7—N1 −1.3 (3) N1—C8—C18—N3 53.4 (2)
C7—N1—C8—C9 109.5 (2) C9—C8—C18—N3 171.84 (16)
C7—N1—C8—C18 −131.2 (2) N1—C8—C18—C19 178.63 (18)
N1—C8—C9—C10 54.8 (2) C9—C8—C18—C19 −63.0 (2)
C18—C8—C9—C10 −65.7 (2) N3—C18—C19—C20 −0.7 (3)
N1—C8—C9—C17 −125.40 (19) C8—C18—C19—C20 −126.4 (2)
C18—C8—C9—C17 114.15 (19) C18—C19—C20—C21 59.8 (3)
C17—C9—C10—C11 −1.5 (3) C18—C19—C20—C24 −58.9 (3)
C8—C9—C10—C11 178.35 (19) C19—C20—C21—C22 −62.9 (3)
C12—N2—C11—C10 1.3 (3) C24—C20—C21—C22 57.0 (3)
C9—C10—C11—N2 −0.2 (3) C18—N3—C22—C21 54.8 (3)
C11—N2—C12—C13 179.7 (2) C23—N3—C22—C21 −63.2 (2)
C11—N2—C12—C17 −0.7 (3) C20—C21—C22—N3 5.9 (3)
N2—C12—C13—C14 −178.8 (2) C18—N3—C23—C24 −63.8 (2)
C17—C12—C13—C14 1.6 (3) C22—N3—C23—C24 56.8 (3)
C12—C13—C14—C15 0.3 (3) C21—C20—C24—C25 174.1 (2)
C27—O2—C15—C16 174.0 (2) C19—C20—C24—C25 −67.7 (3)
C27—O2—C15—C14 −5.4 (3) C21—C20—C24—C23 −62.3 (3)
C13—C14—C15—C16 −1.8 (3) C19—C20—C24—C23 56.0 (3)
C13—C14—C15—O2 177.6 (2) N3—C23—C24—C25 129.9 (2)
O2—C15—C16—C17 −178.10 (18) N3—C23—C24—C20 4.9 (3)
C14—C15—C16—C17 1.4 (3) C20—C24—C25—C26 −116.8 (3)
C15—C16—C17—C12 0.5 (3) C23—C24—C25—C26 122.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.88 2.605 (2) 148.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2284).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Brunner, H., Biigler, J. & Nuber, B. (1995). Tetrahedron Asymmetry, 6, 1699–1702.
  4. He, W., Liu, P., Zhang, B.-L. Sun, X.-L. & Zhang, S.-Y. (2006). Appl. Organometal. Chem. 20, 328–334.
  5. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  6. Jennings, W. B. & Lovely, C. J. (1991). Tetrahedron, 41, 5561–5568.
  7. Jones, P. G. (1986). Acta Cryst. A42, 57.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Xie, Y.-S., Dong, W.-L., He, L.-P., Zhang, X.-L. & Zhao, B.-X. (2010). Acta Cryst. E66, o3106. [DOI] [PMC free article] [PubMed]
  11. Yin, H. D., Wang, Q. B. & Xue, S. C. (2004). J. Organomet. Chem. 689, 2480–2485.
  12. Yoon, T. P. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 466–468. [DOI] [PubMed]
  13. Zhu, H.-Y. (2011). Acta Cryst. E67, o812. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021507/jh2284sup1.cif

e-67-o1674-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021507/jh2284Isup2.hkl

e-67-o1674-Isup2.hkl (115KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021507/jh2284Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES