Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1734–o1735. doi: 10.1107/S1600536811019866

Ortho­rhom­bic polymorph of (6,7-dimeth­oxy-1,2,3,4-tetra­hydro­isoquinolin-1-yl)methanol

Aouicha Elkhamlichi a, Mohammed Lachkar a, Brahim El Bali b,*, Michal Dusek c, Karla Fejfarova c
PMCID: PMC3151966  PMID: 21837123

Abstract

The asymmetric unit of the title compound, C12H17NO3, contains two mol­ecules with different conformations. It is a polymorph of the monoclinic form [El Antri et al. (2004). Mol­ecules, 9, 650–657]; the samples were crystallized at different temperatures from the same solvent. In both structures, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains. The conformations of the chains and their packing differ markedly in the two polymorphs.

Related literature

For background to polymorphism in drugs, see: Brittan (1999); Bernstein (2002). For background to alkaloids and their pharmaceutical properties, see: Bently (1998); Herbert (1985). Kitamura et al. (1994); He et al. (2000); Gray et al. (1989). For natural-product isolation techniques, see: Dalton (1979). For the monoclinic polymorph, see: El Antri et al. (2004).graphic file with name e-67-o1734-scheme1.jpg

Experimental

Crystal data

  • C12H17NO3

  • M r = 223.27

  • Orthorhombic, Inline graphic

  • a = 8.9917 (11) Å

  • b = 13.4769 (12) Å

  • c = 18.576 (4) Å

  • V = 2251.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.51 × 0.35 × 0.32 mm

Data collection

  • Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector

  • 30187 measured reflections

  • 2679 independent reflections

  • 1515 reflections with I > 3σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.091

  • S = 1.15

  • 2679 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811019866/hb5884sup1.cif

e-67-o1734-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811019866/hb5884Isup2.hkl

e-67-o1734-Isup2.hkl (129.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019866/hb5884Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2i 0.83 (3) 1.92 (3) 2.740 (4) 169 (3)
O4—H4o⋯N1ii 0.79 (3) 2.03 (3) 2.810 (4) 172 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge support by the CNRST (grant No URAC19) and the Praemium Academiae project of Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

Temperature-induced polymorphism is important in pharmaceutical industry and especially, in the study of drug action with respect to their chirality (Brittan, 1999 and Bernstein, 2002). Isoquinoline alkaloids form a large group of compounds which could be extracted from many plants (Bently, 1998). Most of these natural alkaloids are optically active and allow interesting clinical uses such as analgesics, antihypertensives, smooth or skeletal muscle relaxants, antispasmodics, antitussives, antimalarials, narcotics and antipyretics (Kitamura et al., 1994). Worthy also to report that 1-substituted tetrahydroisoquinolines display interesting biological and pharmacological properties (He et al., 2000). Especially 1-methyl- and 1-phenyltetrahydroisoquinoline are involved in the treatment of Parkinson and other nervous system diseases (Gray et al., 1989).

In a previous study (El Antri et al., 2004), a single-crystal of 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline was measured at 173 K. A monoclinic symmetry (S. G.: P21) has been found in the structure. Re-measurement, at 150 K, of another crystal from the same plant extract but crystallised at a different temperature, revealed the same composition C12H17NO3 (Fig. 1) but with an orthorhombic symmetry (S. G.: P212121). Testing measurements between 120 K and room temperature revealed however no phase transition. Moreover, no simple transformation between the monoclinic and orthorhombic unit cells could be found. Thus, 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline exists in two crystallographic forms. We report in the present study on the crystal determination of the new orthorhombic 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline. As in the monoclinic form, the molecules C12H17NO3 are connected by strong hydrogen bond O—H···N (Fig. 2). In the monoclinic previously published structure the chain runs along a and the molecules have alternating orientation with respect to the projection of hydrogen bonds into the a axis (Fig. 3a). On the other hand, in the orthorhombic structure reported here the chain direction is along b and the molecules are oriented in one side with respect to the projection of hydrogen bonds into the b axis (Fig. 3 b). The packing of the chains is quite different in both structures. H-bonds interactions are shown in Figs 3a&b as dashed lines and, for the new structure, they are summarized in Tab.3.

The asymmetric unit of the title compound contains two independent molecules, which differ in conformation of the tetrahydroisoquinoline ring (Fig. 4). The nitrogen atoms in each of the molecules are oriented on opposite sides of the ring. The conformation of the molecules may be influenced by intermolecular O—H···N hydrogen bonding involving both N1 and N2 atoms.

Distances and angles are of the same magnitude in the two crystals. The heterocyclic ring of tetrahydroisoquinoline adopts a half chair conformation. The conformation of the asymmetric carbon atoms are the same in both asymmetric molecules.

Experimental

Alkaloids under investigations were extracted from the seeds of Calycotome villosa (Poiret) Link Subsp as in (El Antri et al., 2004). The same procedure was used for extractions and crystals synthesis. However, the experiments took place at different room temperatures.

Refinement

Positions of hydrogen atoms bounded to nitrogen and oxygen were refined using a distance restraint. The other H atoms were fixed in the ideal geometry. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

:. Ellipsoid plot of the title compound. Anisotropic displacement parameters drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: Projection onto (001) of the structure of (I), H-bonds as dashed lines.

Fig. 3.

Fig. 3.

a&b: Orientation of the molecular chains in the monoclinic and orthorhombic forms. H-bonds as dashed lines.

Fig. 4.

Fig. 4.

Overlay of two molecules present in assymetric unit. Yellow: C1–C12, blue: C13–C24. Hydrogen atoms are omitted for clarity.

Crystal data

C12H17NO3 F(000) = 960
Mr = 223.27 Dx = 1.317 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 9027 reflections
a = 8.9917 (11) Å θ = 2.5–26.5°
b = 13.4769 (12) Å µ = 0.09 mm1
c = 18.576 (4) Å T = 150 K
V = 2251.0 (6) Å3 Irregular, colorless
Z = 8 0.51 × 0.35 × 0.32 mm

Data collection

Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector 1515 reflections with I > 3σ(I)
Radiation source: X-ray tube Rint = 0.054
graphite θmax = 26.6°, θmin = 2.5°
Detector resolution: 8.3438 pixels mm-1 h = −11→11
Rotation method data acquisition using ω scans k = −16→16
30187 measured reflections l = −23→23
2679 independent reflections

Refinement

Refinement on F2 124 constraints
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.15 (Δ/σ)max = 0.004
2679 reflections Δρmax = 0.24 e Å3
301 parameters Δρmin = −0.15 e Å3
0 restraints

Special details

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2415 (2) 0.53891 (18) 0.36542 (11) 0.0430 (7)
O2 0.4410 (2) 0.45708 (14) 0.02813 (11) 0.0351 (7)
O3 0.6069 (2) 0.30148 (13) 0.02562 (11) 0.0333 (7)
O4 0.2946 (2) −0.04072 (18) 0.15204 (13) 0.0501 (8)
O5 0.0403 (2) 0.05130 (14) 0.48188 (10) 0.0355 (7)
O6 −0.0888 (2) 0.22154 (13) 0.47614 (11) 0.0369 (7)
N1 0.4198 (3) 0.37470 (18) 0.34959 (13) 0.0347 (9)
N2 0.0505 (3) 0.09105 (18) 0.15335 (14) 0.0377 (10)
C1 0.3258 (4) 0.4076 (2) 0.28954 (16) 0.0375 (11)
C2 0.4044 (3) 0.3779 (2) 0.21914 (17) 0.0319 (10)
C3 0.3811 (3) 0.4319 (2) 0.15544 (16) 0.0335 (10)
C4 0.4524 (3) 0.4070 (2) 0.09213 (16) 0.0298 (10)
C5 0.5455 (3) 0.3232 (2) 0.09070 (15) 0.0281 (10)
C6 0.5657 (3) 0.2694 (2) 0.15306 (16) 0.0291 (10)
C7 0.4979 (3) 0.2972 (2) 0.21772 (17) 0.0301 (10)
C8 0.5328 (3) 0.2388 (2) 0.28580 (16) 0.0344 (11)
C9 0.4336 (3) 0.2665 (2) 0.34811 (16) 0.0349 (11)
C10 0.3029 (4) 0.5168 (2) 0.29733 (16) 0.0437 (12)
C11 0.3469 (3) 0.5421 (2) 0.02716 (16) 0.0416 (11)
C12 0.7128 (4) 0.2228 (2) 0.02437 (17) 0.0428 (12)
C13 0.1076 (3) 0.0400 (2) 0.21832 (16) 0.0370 (10)
C14 0.0628 (3) 0.09610 (19) 0.28544 (16) 0.0300 (10)
C15 0.0789 (3) 0.0489 (2) 0.35197 (16) 0.0335 (10)
C16 0.0308 (3) 0.0923 (2) 0.41458 (15) 0.0272 (10)
C17 −0.0383 (3) 0.1861 (2) 0.41197 (16) 0.0300 (10)
C18 −0.0500 (3) 0.2338 (2) 0.34686 (16) 0.0310 (11)
C19 0.0006 (3) 0.1904 (2) 0.28279 (16) 0.0288 (10)
C20 −0.0159 (3) 0.2449 (2) 0.21245 (16) 0.0355 (11)
C21 0.0785 (3) 0.1987 (2) 0.15450 (16) 0.0390 (12)
C22 0.2709 (3) 0.0187 (2) 0.21388 (17) 0.0437 (11)
C23 0.1144 (4) −0.0419 (2) 0.48738 (16) 0.0497 (12)
C24 −0.1827 (4) 0.3079 (2) 0.47324 (17) 0.0472 (12)
H1 0.229284 0.377124 0.289174 0.045*
H3 0.314106 0.487379 0.155936 0.0402*
H6 0.627874 0.211478 0.15206 0.0349*
H8a 0.523519 0.169103 0.276183 0.0413*
H8b 0.634849 0.249268 0.298996 0.0413*
H9a 0.337109 0.237386 0.341366 0.0419*
H9b 0.477612 0.244005 0.392266 0.0419*
H10a 0.396496 0.550278 0.292131 0.0524*
H10b 0.237013 0.539716 0.26024 0.0524*
H11a 0.343252 0.568724 −0.020729 0.0499*
H11b 0.248601 0.523434 0.042067 0.0499*
H11c 0.38554 0.591309 0.059487 0.0499*
H12a 0.752635 0.216224 −0.023333 0.0513*
H12b 0.791882 0.237308 0.057458 0.0513*
H12c 0.665196 0.161952 0.038152 0.0513*
H13 0.061923 −0.024214 0.221065 0.0444*
H15 0.124753 −0.015423 0.353911 0.0402*
H18 −0.093988 0.298619 0.345199 0.0372*
H20a 0.012609 0.31302 0.218823 0.0425*
H20b −0.118321 0.244051 0.197835 0.0425*
H21a 0.052486 0.226707 0.10869 0.0468*
H21b 0.181588 0.210629 0.164728 0.0468*
H22a 0.324653 0.07989 0.208995 0.0524*
H22b 0.301603 −0.017143 0.256005 0.0524*
H23a 0.120147 −0.061226 0.537046 0.0597*
H23b 0.059956 −0.091076 0.46086 0.0597*
H23c 0.212938 −0.036144 0.467955 0.0597*
H24a −0.214712 0.324831 0.520983 0.0566*
H24b −0.127992 0.36243 0.453042 0.0566*
H24c −0.267876 0.294193 0.443745 0.0566*
H1n 0.374 (3) 0.391 (2) 0.3865 (16) 0.0416*
H2n 0.100 (3) 0.065 (2) 0.1185 (16) 0.0452*
H1o 0.150 (3) 0.547 (3) 0.3609 (18) 0.0516*
H4o 0.378 (4) −0.059 (3) 0.153 (2) 0.0601*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0483 (13) 0.0424 (12) 0.0382 (13) 0.0103 (13) 0.0071 (12) −0.0063 (11)
O2 0.0428 (12) 0.0309 (11) 0.0314 (12) 0.0109 (11) −0.0027 (11) 0.0004 (10)
O3 0.0382 (12) 0.0343 (11) 0.0275 (12) 0.0090 (10) 0.0026 (11) −0.0006 (10)
O4 0.0534 (16) 0.0548 (14) 0.0420 (13) 0.0117 (14) 0.0041 (13) −0.0150 (13)
O5 0.0462 (13) 0.0283 (11) 0.0320 (12) 0.0061 (10) −0.0031 (11) 0.0022 (10)
O6 0.0453 (13) 0.0380 (12) 0.0275 (12) 0.0155 (11) −0.0011 (12) −0.0016 (10)
N1 0.0477 (18) 0.0299 (14) 0.0266 (16) 0.0080 (14) 0.0035 (15) −0.0023 (12)
N2 0.0456 (18) 0.0375 (16) 0.0300 (17) −0.0004 (14) 0.0011 (14) −0.0043 (13)
C1 0.046 (2) 0.0340 (18) 0.0328 (18) 0.0017 (16) 0.0025 (18) 0.0002 (15)
C2 0.0337 (18) 0.0305 (16) 0.0316 (18) 0.0013 (15) −0.0035 (17) −0.0027 (14)
C3 0.0390 (18) 0.0272 (17) 0.0345 (19) 0.0111 (14) −0.0050 (16) −0.0048 (15)
C4 0.0337 (17) 0.0296 (17) 0.0261 (18) 0.0010 (15) −0.0089 (16) −0.0028 (14)
C5 0.0261 (17) 0.0301 (17) 0.0281 (19) 0.0014 (15) −0.0033 (16) −0.0054 (14)
C6 0.0291 (18) 0.0274 (15) 0.0307 (19) 0.0043 (15) −0.0019 (17) −0.0025 (15)
C7 0.0340 (17) 0.0262 (16) 0.0301 (18) 0.0008 (14) 0.0000 (18) −0.0002 (15)
C8 0.045 (2) 0.0289 (17) 0.0292 (18) 0.0029 (15) −0.0014 (18) −0.0017 (14)
C9 0.041 (2) 0.0311 (17) 0.032 (2) 0.0008 (16) −0.0043 (18) 0.0029 (14)
C10 0.049 (2) 0.044 (2) 0.039 (2) 0.0104 (17) 0.0029 (17) 0.0029 (16)
C11 0.055 (2) 0.0323 (17) 0.0374 (19) 0.0135 (17) −0.0089 (17) 0.0043 (17)
C12 0.050 (2) 0.049 (2) 0.0290 (17) 0.0168 (18) 0.0033 (18) −0.0008 (16)
C13 0.0417 (19) 0.0336 (17) 0.0356 (19) 0.0008 (16) 0.0005 (17) −0.0030 (17)
C14 0.0317 (17) 0.0310 (16) 0.0272 (18) 0.0030 (15) 0.0000 (16) −0.0032 (14)
C15 0.0362 (18) 0.0256 (16) 0.0387 (19) −0.0008 (16) −0.0033 (16) −0.0024 (15)
C16 0.0289 (17) 0.0273 (16) 0.0253 (18) −0.0026 (14) −0.0006 (15) 0.0013 (13)
C17 0.0336 (18) 0.0280 (17) 0.0283 (19) −0.0001 (15) −0.0018 (16) −0.0026 (14)
C18 0.0345 (19) 0.0255 (16) 0.033 (2) −0.0016 (15) −0.0054 (17) −0.0031 (15)
C19 0.0284 (17) 0.0314 (17) 0.0266 (17) −0.0034 (14) −0.0029 (17) 0.0013 (15)
C20 0.038 (2) 0.0336 (17) 0.034 (2) −0.0040 (15) −0.0028 (18) 0.0034 (15)
C21 0.039 (2) 0.046 (2) 0.032 (2) −0.0051 (18) −0.0013 (18) 0.0079 (15)
C22 0.046 (2) 0.047 (2) 0.0387 (18) 0.0051 (17) 0.0048 (18) −0.0078 (18)
C23 0.076 (3) 0.0306 (17) 0.042 (2) 0.0087 (19) −0.005 (2) 0.0031 (16)
C24 0.054 (2) 0.050 (2) 0.0378 (19) 0.0244 (19) −0.001 (2) −0.0094 (17)

Geometric parameters (Å, °)

O1—C10 1.412 (4) C9—H9b 0.96
O1—H1o 0.83 (3) C10—H10a 0.96
O2—C4 1.371 (4) C10—H10b 0.96
O2—C11 1.424 (4) C11—H11a 0.96
O3—C5 1.361 (4) C11—H11b 0.96
O3—C12 1.425 (4) C11—H11c 0.96
O4—C22 1.416 (4) C12—H12a 0.96
O4—H4o 0.79 (3) C12—H12b 0.96
O5—C16 1.369 (3) C12—H12c 0.96
O5—C23 1.425 (4) C13—C14 1.513 (4)
O6—C17 1.362 (4) C13—C22 1.498 (4)
O6—C24 1.439 (4) C13—H13 0.96
N1—C1 1.468 (4) C14—C15 1.398 (4)
N1—C9 1.464 (4) C14—C19 1.389 (4)
N1—H1n 0.83 (3) C15—C16 1.372 (4)
N2—C13 1.481 (4) C15—H15 0.96
N2—C21 1.472 (4) C16—C17 1.408 (4)
N2—H2n 0.86 (3) C17—C18 1.374 (4)
C1—C2 1.539 (4) C18—C19 1.402 (4)
C1—C10 1.493 (4) C18—H18 0.96
C1—H1 0.96 C19—C20 1.507 (4)
C2—C3 1.405 (4) C20—C21 1.506 (4)
C2—C7 1.375 (4) C20—H20a 0.96
C3—C4 1.381 (4) C20—H20b 0.96
C3—H3 0.96 C21—H21a 0.96
C4—C5 1.406 (4) C21—H21b 0.96
C5—C6 1.379 (4) C22—H22a 0.96
C6—C7 1.398 (4) C22—H22b 0.96
C6—H6 0.96 C23—H23a 0.96
C7—C8 1.522 (4) C23—H23b 0.96
C8—C9 1.508 (4) C23—H23c 0.96
C8—H8a 0.96 C24—H24a 0.96
C8—H8b 0.96 C24—H24b 0.96
C9—H9a 0.96 C24—H24c 0.96
C10—O1—H1o 109 (2) O3—C12—H12a 109.4718
C4—O2—C11 116.8 (2) O3—C12—H12b 109.4712
C5—O3—C12 116.5 (2) O3—C12—H12c 109.4707
C22—O4—H4o 108 (3) H12a—C12—H12b 109.4716
C16—O5—C23 116.8 (2) H12a—C12—H12c 109.4715
C17—O6—C24 116.5 (2) H12b—C12—H12c 109.4704
C1—N1—C9 109.6 (2) N2—C13—C14 110.3 (2)
C1—N1—H1n 105 (2) N2—C13—C22 112.6 (2)
C9—N1—H1n 108.6 (19) N2—C13—H13 108.2749
C13—N2—C21 112.7 (2) C14—C13—C22 113.7 (2)
C13—N2—H2n 104 (2) C14—C13—H13 107.0055
C21—N2—H2n 109 (2) C22—C13—H13 104.4393
N1—C1—C2 107.6 (2) C13—C14—C15 118.3 (2)
N1—C1—C10 107.7 (2) C13—C14—C19 122.3 (3)
N1—C1—H1 113.3918 C15—C14—C19 119.3 (3)
C2—C1—C10 113.7 (2) C14—C15—C16 121.5 (3)
C2—C1—H1 107.3416 C14—C15—H15 119.2572
C10—C1—H1 107.3033 C16—C15—H15 119.2563
C1—C2—C3 120.8 (2) O5—C16—C15 125.6 (2)
C1—C2—C7 120.2 (3) O5—C16—C17 114.9 (2)
C3—C2—C7 119.0 (3) C15—C16—C17 119.5 (3)
C2—C3—C4 121.5 (3) O6—C17—C16 115.6 (2)
C2—C3—H3 119.2635 O6—C17—C18 125.5 (3)
C4—C3—H3 119.2645 C16—C17—C18 118.9 (3)
O2—C4—C3 125.8 (3) C17—C18—C19 121.8 (3)
O2—C4—C5 115.0 (2) C17—C18—H18 119.0863
C3—C4—C5 119.2 (3) C19—C18—H18 119.0868
O3—C5—C4 115.5 (2) C14—C19—C18 118.8 (3)
O3—C5—C6 125.4 (2) C14—C19—C20 121.1 (3)
C4—C5—C6 119.0 (3) C18—C19—C20 120.0 (2)
C5—C6—C7 121.5 (3) C19—C20—C21 111.2 (2)
C5—C6—H6 119.2431 C19—C20—H20a 109.4705
C7—C6—H6 119.242 C19—C20—H20b 109.4713
C2—C7—C6 119.7 (3) C21—C20—H20a 109.4716
C2—C7—C8 121.3 (3) C21—C20—H20b 109.4716
C6—C7—C8 119.0 (2) H20a—C20—H20b 107.6461
C7—C8—C9 112.8 (2) N2—C21—C20 108.8 (2)
C7—C8—H8a 109.4715 N2—C21—H21a 109.4714
C7—C8—H8b 109.4718 N2—C21—H21b 109.471
C9—C8—H8a 109.4708 C20—C21—H21a 109.4707
C9—C8—H8b 109.4709 C20—C21—H21b 109.4716
H8a—C8—H8b 105.924 H21a—C21—H21b 110.1482
N1—C9—C8 108.1 (2) O4—C22—C13 107.5 (2)
N1—C9—H9a 109.4715 O4—C22—H22a 109.4708
N1—C9—H9b 109.4715 O4—C22—H22b 109.4708
C8—C9—H9a 109.4708 C13—C22—H22a 109.4715
C8—C9—H9b 109.4708 C13—C22—H22b 109.4715
H9a—C9—H9b 110.8097 H22a—C22—H22b 111.3954
O1—C10—C1 110.4 (2) O5—C23—H23a 109.471
O1—C10—H10a 109.4717 O5—C23—H23b 109.4715
O1—C10—H10b 109.4714 O5—C23—H23c 109.4711
C1—C10—H10a 109.4713 H23a—C23—H23b 109.4715
C1—C10—H10b 109.4709 H23a—C23—H23c 109.4704
H10a—C10—H10b 108.4859 H23b—C23—H23c 109.4719
O2—C11—H11a 109.471 O6—C24—H24a 109.4707
O2—C11—H11b 109.4716 O6—C24—H24b 109.4717
O2—C11—H11c 109.4709 O6—C24—H24c 109.4719
H11a—C11—H11b 109.4714 H24a—C24—H24b 109.4711
H11a—C11—H11c 109.4708 H24a—C24—H24c 109.4706
H11b—C11—H11c 109.4716 H24b—C24—H24c 109.4714

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···N2i 0.83 (3) 1.92 (3) 2.740 (4) 169 (3)
O4—H4o···N1ii 0.79 (3) 2.03 (3) 2.810 (4) 172 (4)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5884).

References

  1. Bently, K. W. (1998). The Isoquinoline Alkaloids Amsterdam: Harwood Academic Publishers.
  2. Bernstein, J. (2002). Polymorphism in Molecular Crystals Oxford University Press.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact Bonn, Germany.
  4. Brittan, H. G. (1999). Polymorphism in Pharmaceutical Solids, Drugs and The Pharmaceutical Sciences, Vol. 95. New York: Marcel Dekker.
  5. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  6. Dalton, D. R. (1979). The Alkaloids – The Fundamental Chemistry, a Biogenetic Approach New York: Marcel Dekker.
  7. El Antri, A., Messouri, I., Bouktaib, M., El Alami, R., Bolte, M., El Bali, B. & Lachkar, M. (2004). Molecules, 9, 650–657. [DOI] [PMC free article] [PubMed]
  8. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. [DOI] [PMC free article] [PubMed]
  9. Gray, N. M., Cheng, B. K., Mick, S. J., Lair, C. M. & Contreras, P. C. (1989). J. Med. Chem. 32, 1242–1248. [DOI] [PubMed]
  10. He, Y., Nikulin, V. I., Vansal, S. S., Feller, D. R. & Miller, D. D. (2000). J. Med. Chem. 43, 591–598. [DOI] [PubMed]
  11. Herbert, R. B. (1985). The Chemistry and Biology of Isoquinoline Alkaloids, edited by J. D. Philipson, M. F. Roberts & M. H. Zenk. Berlin, Heidelberg, New York, Tokyo: Springer Verlag.
  12. Kitamura, M., Hsiao, Y., Ohta, M., Tsukamota, M., Ohta, T., Takaya, H. & Noyori, R. (1994). J. Org. Chem. 59, 297–310.
  13. Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  14. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811019866/hb5884sup1.cif

e-67-o1734-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811019866/hb5884Isup2.hkl

e-67-o1734-Isup2.hkl (129.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019866/hb5884Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES