Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 22;67(Pt 7):o1778–o1779. doi: 10.1107/S1600536811023166

The herbicide triflusulfuron-meth­yl

Kurt Mereiter a,*
PMCID: PMC3151983  PMID: 21837154

Abstract

The mol­ecule of the title compound [systematic name: methyl 2-({[4-dimethyl­amino-6-(2,2,2-trifluoro­eth­oxy)-1,3,5-triazin-2-yl]carbamo­yl}sulfamo­yl)-3-methyl­benzoate], C17H19F3N6O6S, features a nearly planar (r.m.s. deviation = 0.098 Å) dimethyl­amino­triazinyl-urea group with a short intra­molecular N—H⋯N hydrogen bond to a triazine N atom. An intra­molecular dipole–dipole inter­action between the sulfamide and carboxyl­ate groups, with Os⋯Cc = 2.800 (1) Å and Ns⋯Oc = 2.835 (1) Å, controls the orientation of the methyl­benzoate group and the shape of the mol­ecule. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonding, C—H⋯X (X = N,O) inter­actions and arene π–π stacking.

Related literature

For general information on the synthesis and herbicidal properties of the title compound, see: EFSA (2008); Moon (1989); Peeples et al. (1991); Wittenbach et al. (1994). For the inhibition mechanism of sulfonyl­urea herbicides on acetohy­droxy acid syntheases, see: Duggleby et al. (2008); McCourt et al. (2005). For the crystal structures of related sulfonyl­urea compounds, see: Ma, Wang et al. (2003); Ma, Li et al. (2003); Wang et al. (2004); Sorokin et al. (1993); Liu et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o1778-scheme1.jpg

Experimental

Crystal data

  • C17H19F3N6O6S

  • M r = 492.44

  • Monoclinic, Inline graphic

  • a = 16.7107 (11) Å

  • b = 15.6406 (11) Å

  • c = 17.1875 (12) Å

  • β = 107.035 (1)°

  • V = 4295.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.55 × 0.35 × 0.30 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.84, T max = 0.94

  • 31010 measured reflections

  • 6217 independent reflections

  • 5708 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.102

  • S = 1.07

  • 6217 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023166/gk2384sup1.cif

e-67-o1778-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023166/gk2384Isup2.hkl

e-67-o1778-Isup2.hkl (304.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023166/gk2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5 0.88 1.95 2.6410 (13) 135
N2—H2N⋯N3i 0.88 2.03 2.8998 (12) 172
C9—H9A⋯O5 0.98 2.42 3.2253 (16) 139
C14—H14B⋯O3 0.98 2.59 3.4363 (16) 145
C14—H14C⋯O5ii 0.98 2.42 3.2637 (14) 143
C16—H16A⋯O2iii 0.99 2.55 3.4209 (14) 147
C16—H16B⋯O1iv 0.99 2.32 3.2325 (14) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Triflusulfuron-methyl, methyl 2-[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]carbamoylsulfamoyl]-3-methylbenzoate, (I), is the methyl ester of Triflusulfuron. Both substances are triazinylsulfonylurea herbicides, a subclass of sulfonylurea herbicides. These substances are efficient inhibitors of acetohydroxyacid synthase (AHAS), which impairs the synthesis of the branched-chain amino acids valine, leucine and isoleucine in plants leading to the cessation of cell division and subsequent growth processes (EFSA, 2008). Triflusulfuron-methyl is in use as a post-emergence herbicide in crop protection of sugar and fodder beet in order to control various annual grasses and broad–leaved weeds like fools parsley, mayweeds, brassica species, or small nettle (Moon, 1989; Peeples et al., 1991; Wittenbach et al., 1994). Trade names of the originator DuPontTM (Moon, 1989) for formulations of (I) are UpBeet in the USA and Canada, and Debut or Safari in Europe. For mammalians, the toxicity of Triflusulfuron-methyl is comparatively low whereas it is high for aquatic organisms (EFSA, 2008). In view of the actual importance of this substance a crystal structure determination was carried out and is presented here.

A view of the asymmetric unit of the structure is presented in Fig. 1. Bond lengths and angles in the molecule exhibit normal values (Allen et al., 1987) and are in good agreement with the few related crystal structures, which have been determined so far with comparable accuracy [refcodes RACCOO (Ma, Wang et al., 2003), XUYTUG (Ma, Li et al., 2003), NAFWAT (Wang et al., 2004) and YUZHUW (Sorokin et al., 1993); Cambridge Structural Database, Version 5.31, with Aug. 2010 updates; Allen, 2002]. The molecule of the title compound can be divided into three approximately planar parts: (i) the triazinylsulfonylurea group including the triazine substituents N(CH3)2 and OCH2CF3 comprising the 18 atoms S1, O2, O5, O6, N1 to N6, and C10 to C17 with a r.m.s. deviation from planarity of 0.098 Å; (ii) the methylphenyl group with a r.m.s. deviation from planarity of 0.011 Å; and (iii) the methylcarboxylate group with a r.m.s. deviation from planarity of 0.002 Å. The interplanar angle is 75.26 (2)° between (i) and (ii), and 48.07 (6)° between (ii) and (iii). The mutual orienations of these three parts and the shape of the entire molecule are controlled by two remarkable intramolecular interactions. Firstly, by a short and strong internal hydrogen bond N1—H1n···N5 with N1···N5 = 2.641 (1) Å, where H1n is the most acidic hydrogen atom of the compound and N5 is a triazine nitrogen as the acceptor (Fig. 1). Secondly, by an intramolecular dipole-dipole interaction between the sulfamoyl and the carboxylate group with the very short contact distances O2···C7 = 2.800 (1) Å and O3···N1 = 2.835 (1) Å (Fig. 1). These interactions are characteristic also for other triazinyl- and pyrimidinyl-sulfonylurea compounds, e.g. for RACCOO (Ma, Wang et al., 2003) where the corresponding distances are N(H)···N = 2.690 Å, O···C = 2.823 Å, and O···N = 3.198 Å, respectively. As the result the stereochemistry and shape of the molecule cores of all these compounds is in crystalline state remarkably uniform. Interestingly this stereochemistry changes drastically when the molecules enter the herbicide binding site of acetohydroxyacid synthases (AHAS): There molecules like (I) convert by ~180°-rotations about the bonds C11—N2 and N2—C10, which opens the intramolecular hydrogen bond N1—H1n···N5, makes both NH groups to be approximately parallel and exo-oriented toward hydrogen bond acceptors like H2O, and brings O5, N3, and O6 closely together for hydrogen bond interactions with the guanidine terminus of an arginine in the herbicide pocket of AHAS enzymes (McCourt et al., 2005; Duggleby et al., 2008). Such conversion also takes place under concomitant deprotonation of N1 when a triazinyl- or pyrimidinyl-sulfonylurea compound chelates a metal atom with the urea oxygen (O becomes formally anionic by NH-deprotonation) and a triazine/pyrimidine nitrogen, e.g. in the Cu complex MOGTIM (Liu et al., 2008).

Further hydrogen bond-like interactions in (I) are listed in Table 1. The most important of them, apart from N1—H1n···N5, is the intermolecular bond N2—H2n···N3i, two of which link a pair of molecules related by a twofold symmetry axis (Fig. 1). In the crystal lattice these hydrogen bonded pairs interact then by π-π-stacking between pairs of inversion related and mutually slipped dimethylamino-triazine groups with a C13—C13(1 - x,1 - y,1 - z) distance of 3.460 (2) Å (ring-ring perpendicular distance 3.420 Å, ring-ring slippage 2.743 Å) and by weaker π-π-stacking between inversion related pairs of benzene rings (perpendicular distance 3.587 Å, ring-ring slippage 1.002 Å). Fig. 2 exemplifies a part of the crystal lattice with N—H···N hydrogen bonds and triazine π-π- interactions. A packing diagram of the structure is depicted in Fig. 3.

Experimental

A sample of (I) was obtained from Sigma-Aldrich. It was recrystallized from methanol by room temperature evaporation to furnish colourless prisms suitable for X-ray diffraction.

Refinement

H atoms were located in a difference Fourier map, placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C,N) for CH, CH2 and NH groups; Uiso(H) = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are drawn as dashed red lines. Symmetry code i: -x + 1, y, -z + 3/2. Intramolecular interactions are N1···N5 = 2.641 (1) Å, O2···C7 = 2.800 (1) Å, and O3···N1 = 2.835 (1) Å.

Fig. 2.

Fig. 2.

View of the crystal structure of (I) showing N—H···N hydrogen bonds as dashed red lines and π-π stacking interactions between dimethylamino-triazine groups as orange lines. C-bonded H-atoms omitted for clarity.

Fig. 3.

Fig. 3.

Packing diagram of (I) in a view down the c-axis, i.e. approximately along the intermolecular hydrogen bonds N2—H2n···N3. H-atoms omitted for clarity.

Crystal data

C17H19F3N6O6S F(000) = 2032
Mr = 492.44 Dx = 1.523 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 16.7107 (11) Å Cell parameters from 9962 reflections
b = 15.6406 (11) Å θ = 2.6–30.5°
c = 17.1875 (12) Å µ = 0.23 mm1
β = 107.035 (1)° T = 100 K
V = 4295.1 (5) Å3 Block, colourless
Z = 8 0.55 × 0.35 × 0.30 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 6217 independent reflections
Radiation source: fine-focus sealed tube 5708 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −23→23
Tmin = 0.84, Tmax = 0.94 k = −22→22
31010 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 3.028P] where P = (Fo2 + 2Fc2)/3
6217 reflections (Δ/σ)max = 0.001
302 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.196829 (15) 0.535633 (16) 0.521723 (15) 0.01859 (7)
O1 0.19376 (6) 0.62050 (5) 0.55125 (6) 0.02835 (18)
O2 0.18217 (5) 0.52321 (5) 0.43604 (5) 0.02233 (16)
O3 0.22779 (6) 0.34464 (6) 0.47823 (6) 0.02816 (18)
O4 0.09973 (6) 0.31848 (6) 0.39337 (6) 0.03011 (19)
O5 0.29214 (5) 0.50520 (6) 0.69463 (5) 0.02743 (18)
O6 0.65207 (5) 0.33795 (5) 0.66348 (5) 0.02148 (16)
N1 0.29218 (5) 0.49756 (6) 0.56180 (5) 0.01930 (17)
H1N 0.3228 0.4857 0.5294 0.023*
N2 0.40259 (5) 0.44268 (6) 0.66704 (5) 0.01867 (17)
H2N 0.4227 0.4320 0.7194 0.022*
N3 0.52875 (5) 0.38975 (6) 0.66484 (5) 0.01831 (17)
N4 0.55747 (6) 0.36370 (6) 0.53872 (5) 0.01880 (17)
N5 0.42372 (5) 0.41857 (6) 0.54018 (5) 0.01753 (16)
N6 0.45192 (6) 0.39316 (6) 0.41973 (5) 0.02194 (18)
C1 0.12686 (6) 0.46904 (7) 0.55453 (7) 0.02002 (19)
C2 0.10617 (7) 0.38937 (7) 0.51509 (7) 0.0220 (2)
C3 0.04287 (8) 0.34016 (8) 0.52991 (8) 0.0295 (2)
H3 0.0281 0.2869 0.5030 0.035*
C4 0.00129 (8) 0.36899 (9) 0.58398 (9) 0.0323 (3)
H4 −0.0426 0.3358 0.5934 0.039*
C5 0.02355 (7) 0.44542 (9) 0.62381 (8) 0.0305 (3)
H5 −0.0049 0.4634 0.6614 0.037*
C6 0.08655 (7) 0.49787 (8) 0.61108 (7) 0.0252 (2)
C7 0.15278 (7) 0.35064 (7) 0.46116 (7) 0.0229 (2)
C8 0.13986 (9) 0.27562 (9) 0.34038 (9) 0.0349 (3)
H8A 0.0972 0.2494 0.2949 0.052*
H8B 0.1774 0.2312 0.3710 0.052*
H8C 0.1722 0.3172 0.3193 0.052*
C9 0.10498 (8) 0.57997 (10) 0.65897 (9) 0.0352 (3)
H9A 0.1656 0.5858 0.6835 0.053*
H9B 0.0773 0.5791 0.7020 0.053*
H9C 0.0841 0.6285 0.6226 0.053*
C10 0.32549 (6) 0.48361 (7) 0.64409 (6) 0.01966 (19)
C11 0.45251 (6) 0.41618 (6) 0.62069 (6) 0.01614 (18)
C12 0.57646 (6) 0.36447 (6) 0.61875 (6) 0.01739 (18)
C13 0.47864 (7) 0.39181 (6) 0.50082 (6) 0.01759 (18)
C14 0.36494 (8) 0.41607 (8) 0.37767 (7) 0.0259 (2)
H14A 0.3530 0.4731 0.3951 0.039*
H14B 0.3273 0.3743 0.3911 0.039*
H14C 0.3564 0.4161 0.3188 0.039*
C15 0.50356 (9) 0.36299 (8) 0.37022 (7) 0.0279 (2)
H15A 0.5611 0.3547 0.4048 0.042*
H15B 0.5030 0.4054 0.3281 0.042*
H15C 0.4813 0.3086 0.3445 0.042*
C16 0.71016 (7) 0.31386 (7) 0.62056 (7) 0.0224 (2)
H16A 0.7187 0.3614 0.5858 0.027*
H16B 0.6896 0.2633 0.5859 0.027*
C17 0.78997 (8) 0.29349 (10) 0.68535 (9) 0.0334 (3)
F1 0.84761 (5) 0.26665 (7) 0.65023 (7) 0.0484 (2)
F2 0.78026 (6) 0.23027 (8) 0.73382 (7) 0.0546 (3)
F3 0.82179 (6) 0.36048 (8) 0.73076 (7) 0.0570 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01670 (12) 0.01668 (12) 0.02069 (13) 0.00019 (8) 0.00281 (9) 0.00071 (8)
O1 0.0256 (4) 0.0188 (4) 0.0389 (5) 0.0006 (3) 0.0068 (3) −0.0046 (3)
O2 0.0207 (4) 0.0242 (4) 0.0199 (4) 0.0001 (3) 0.0026 (3) 0.0051 (3)
O3 0.0252 (4) 0.0237 (4) 0.0338 (5) 0.0012 (3) 0.0060 (3) −0.0034 (3)
O4 0.0294 (4) 0.0285 (4) 0.0293 (4) −0.0035 (3) 0.0038 (3) −0.0060 (3)
O5 0.0214 (4) 0.0398 (5) 0.0203 (4) 0.0045 (3) 0.0048 (3) −0.0065 (3)
O6 0.0160 (3) 0.0298 (4) 0.0192 (3) 0.0026 (3) 0.0060 (3) 0.0009 (3)
N1 0.0155 (4) 0.0234 (4) 0.0175 (4) 0.0012 (3) 0.0025 (3) −0.0011 (3)
N2 0.0165 (4) 0.0263 (4) 0.0124 (3) 0.0017 (3) 0.0028 (3) −0.0007 (3)
N3 0.0153 (4) 0.0251 (4) 0.0139 (4) 0.0002 (3) 0.0033 (3) 0.0004 (3)
N4 0.0213 (4) 0.0197 (4) 0.0164 (4) −0.0022 (3) 0.0070 (3) −0.0011 (3)
N5 0.0191 (4) 0.0192 (4) 0.0130 (4) −0.0012 (3) 0.0028 (3) −0.0003 (3)
N6 0.0271 (4) 0.0253 (4) 0.0133 (4) −0.0033 (3) 0.0058 (3) −0.0003 (3)
C1 0.0165 (4) 0.0220 (5) 0.0199 (4) 0.0002 (3) 0.0027 (3) 0.0032 (4)
C2 0.0202 (5) 0.0199 (5) 0.0240 (5) 0.0000 (4) 0.0036 (4) 0.0040 (4)
C3 0.0245 (5) 0.0237 (5) 0.0385 (6) −0.0032 (4) 0.0062 (5) 0.0078 (5)
C4 0.0222 (5) 0.0360 (6) 0.0389 (7) 0.0002 (5) 0.0092 (5) 0.0161 (5)
C5 0.0203 (5) 0.0442 (7) 0.0276 (6) 0.0058 (5) 0.0080 (4) 0.0104 (5)
C6 0.0185 (5) 0.0337 (6) 0.0222 (5) 0.0036 (4) 0.0038 (4) 0.0017 (4)
C7 0.0252 (5) 0.0152 (4) 0.0266 (5) −0.0019 (4) 0.0048 (4) 0.0014 (4)
C8 0.0402 (7) 0.0314 (6) 0.0322 (6) −0.0034 (5) 0.0091 (5) −0.0095 (5)
C9 0.0251 (6) 0.0480 (8) 0.0327 (6) 0.0036 (5) 0.0089 (5) −0.0129 (6)
C10 0.0163 (4) 0.0229 (5) 0.0180 (4) −0.0014 (4) 0.0023 (3) −0.0032 (4)
C11 0.0156 (4) 0.0177 (4) 0.0143 (4) −0.0022 (3) 0.0031 (3) −0.0003 (3)
C12 0.0169 (4) 0.0181 (4) 0.0172 (4) −0.0022 (3) 0.0052 (3) 0.0001 (3)
C13 0.0222 (5) 0.0159 (4) 0.0147 (4) −0.0042 (3) 0.0054 (3) −0.0005 (3)
C14 0.0293 (5) 0.0301 (5) 0.0143 (4) −0.0027 (4) 0.0000 (4) 0.0014 (4)
C15 0.0381 (6) 0.0310 (6) 0.0176 (5) −0.0032 (5) 0.0131 (4) −0.0024 (4)
C16 0.0195 (4) 0.0237 (5) 0.0270 (5) 0.0007 (4) 0.0118 (4) 0.0007 (4)
C17 0.0203 (5) 0.0438 (7) 0.0387 (7) 0.0052 (5) 0.0127 (5) 0.0088 (5)
F1 0.0268 (4) 0.0632 (6) 0.0641 (6) 0.0147 (4) 0.0270 (4) 0.0148 (5)
F2 0.0356 (5) 0.0737 (7) 0.0595 (6) 0.0213 (5) 0.0215 (4) 0.0405 (5)
F3 0.0273 (4) 0.0810 (8) 0.0545 (6) −0.0069 (4) −0.0011 (4) −0.0191 (5)

Geometric parameters (Å, °)

S1—O1 1.4274 (9) C2—C7 1.5020 (16)
S1—O2 1.4337 (8) C3—C4 1.389 (2)
S1—N1 1.6507 (9) C3—H3 0.9500
S1—C1 1.7765 (11) C4—C5 1.374 (2)
O3—C7 1.2044 (15) C4—H4 0.9500
O4—C7 1.3385 (14) C5—C6 1.4016 (17)
O4—C8 1.4444 (16) C5—H5 0.9500
O5—C10 1.2094 (13) C6—C9 1.5076 (19)
O6—C12 1.3381 (12) C8—H8A 0.9800
O6—C16 1.4311 (12) C8—H8B 0.9800
N1—C10 1.3771 (13) C8—H8C 0.9800
N1—H1N 0.8800 C9—H9A 0.9800
N2—C11 1.3753 (13) C9—H9B 0.9800
N2—C10 1.3884 (13) C9—H9C 0.9800
N2—H2N 0.8800 C14—H14A 0.9800
N3—C12 1.3378 (13) C14—H14B 0.9800
N3—C11 1.3429 (12) C14—H14C 0.9800
N4—C12 1.3179 (13) C15—H15A 0.9800
N4—C13 1.3602 (14) C15—H15B 0.9800
N5—C11 1.3258 (12) C15—H15C 0.9800
N5—C13 1.3561 (13) C16—C17 1.5000 (17)
N6—C13 1.3333 (13) C16—H16A 0.9900
N6—C15 1.4566 (15) C16—H16B 0.9900
N6—C14 1.4656 (15) C17—F3 1.3216 (19)
C1—C6 1.4090 (16) C17—F2 1.3332 (16)
C1—C2 1.4122 (15) C17—F1 1.3449 (15)
C2—C3 1.3906 (16)
O1—S1—O2 118.56 (5) H8A—C8—H8C 109.5
O1—S1—N1 108.54 (5) H8B—C8—H8C 109.5
O2—S1—N1 103.49 (5) C6—C9—H9A 109.5
O1—S1—C1 109.68 (5) C6—C9—H9B 109.5
O2—S1—C1 108.44 (5) H9A—C9—H9B 109.5
N1—S1—C1 107.50 (5) C6—C9—H9C 109.5
C7—O4—C8 114.32 (10) H9A—C9—H9C 109.5
C12—O6—C16 117.02 (8) H9B—C9—H9C 109.5
C10—N1—S1 122.42 (8) O5—C10—N1 124.11 (10)
C10—N1—H1N 118.8 O5—C10—N2 120.60 (10)
S1—N1—H1N 118.8 N1—C10—N2 115.29 (9)
C11—N2—C10 130.10 (9) N5—C11—N3 126.34 (9)
C11—N2—H2N 114.9 N5—C11—N2 120.00 (9)
C10—N2—H2N 114.9 N3—C11—N2 113.67 (8)
C12—N3—C11 112.81 (8) N4—C12—N3 128.15 (9)
C12—N4—C13 113.58 (9) N4—C12—O6 119.67 (9)
C11—N5—C13 114.85 (9) N3—C12—O6 112.18 (9)
C13—N6—C15 122.09 (10) N6—C13—N5 116.63 (9)
C13—N6—C14 119.97 (9) N6—C13—N4 119.11 (9)
C15—N6—C14 117.57 (9) N5—C13—N4 124.26 (9)
C6—C1—C2 120.93 (10) N6—C14—H14A 109.5
C6—C1—S1 121.56 (9) N6—C14—H14B 109.5
C2—C1—S1 117.16 (8) H14A—C14—H14B 109.5
C3—C2—C1 119.53 (11) N6—C14—H14C 109.5
C3—C2—C7 116.72 (10) H14A—C14—H14C 109.5
C1—C2—C7 123.62 (10) H14B—C14—H14C 109.5
C4—C3—C2 119.96 (12) N6—C15—H15A 109.5
C4—C3—H3 120.0 N6—C15—H15B 109.5
C2—C3—H3 120.0 H15A—C15—H15B 109.5
C5—C4—C3 120.04 (11) N6—C15—H15C 109.5
C5—C4—H4 120.0 H15A—C15—H15C 109.5
C3—C4—H4 120.0 H15B—C15—H15C 109.5
C4—C5—C6 122.53 (12) O6—C16—C17 105.26 (9)
C4—C5—H5 118.7 O6—C16—H16A 110.7
C6—C5—H5 118.7 C17—C16—H16A 110.7
C5—C6—C1 116.95 (11) O6—C16—H16B 110.7
C5—C6—C9 117.13 (11) C17—C16—H16B 110.7
C1—C6—C9 125.92 (11) H16A—C16—H16B 108.8
O3—C7—O4 124.01 (11) F3—C17—F2 108.69 (13)
O3—C7—C2 124.89 (11) F3—C17—F1 107.18 (11)
O4—C7—C2 110.97 (10) F2—C17—F1 106.45 (11)
O4—C8—H8A 109.5 F3—C17—C16 112.73 (12)
O4—C8—H8B 109.5 F2—C17—C16 112.14 (11)
H8A—C8—H8B 109.5 F1—C17—C16 109.34 (11)
O4—C8—H8C 109.5
O1—S1—N1—C10 64.66 (10) S1—N1—C10—O5 −7.42 (16)
O2—S1—N1—C10 −168.53 (9) S1—N1—C10—N2 173.18 (8)
C1—S1—N1—C10 −53.90 (10) C11—N2—C10—O5 −177.04 (11)
O1—S1—C1—C6 −8.55 (11) C11—N2—C10—N1 2.38 (16)
O2—S1—C1—C6 −139.44 (9) C13—N5—C11—N3 −0.51 (15)
N1—S1—C1—C6 109.28 (9) C13—N5—C11—N2 179.32 (9)
O1—S1—C1—C2 164.73 (8) C12—N3—C11—N5 0.02 (15)
O2—S1—C1—C2 33.84 (10) C12—N3—C11—N2 −179.81 (9)
N1—S1—C1—C2 −77.44 (9) C10—N2—C11—N5 −8.96 (17)
C6—C1—C2—C3 2.50 (16) C10—N2—C11—N3 170.89 (10)
S1—C1—C2—C3 −170.82 (9) C13—N4—C12—N3 −0.72 (15)
C6—C1—C2—C7 −173.24 (10) C13—N4—C12—O6 179.68 (9)
S1—C1—C2—C7 13.44 (14) C11—N3—C12—N4 0.66 (15)
C1—C2—C3—C4 −0.85 (17) C11—N3—C12—O6 −179.72 (9)
C7—C2—C3—C4 175.18 (11) C16—O6—C12—N4 3.04 (14)
C2—C3—C4—C5 −1.03 (19) C16—O6—C12—N3 −176.62 (9)
C3—C4—C5—C6 1.33 (19) C15—N6—C13—N5 −177.58 (10)
C4—C5—C6—C1 0.28 (17) C14—N6—C13—N5 −4.83 (14)
C4—C5—C6—C9 −179.79 (12) C15—N6—C13—N4 1.92 (15)
C2—C1—C6—C5 −2.19 (16) C14—N6—C13—N4 174.67 (9)
S1—C1—C6—C5 170.84 (9) C11—N5—C13—N6 179.90 (9)
C2—C1—C6—C9 177.89 (11) C11—N5—C13—N4 0.43 (14)
S1—C1—C6—C9 −9.08 (16) C12—N4—C13—N6 −179.33 (9)
C8—O4—C7—O3 −0.53 (17) C12—N4—C13—N5 0.12 (14)
C8—O4—C7—C2 −176.61 (10) C12—O6—C16—C17 176.05 (10)
C3—C2—C7—O3 −127.73 (13) O6—C16—C17—F3 −63.38 (13)
C1—C2—C7—O3 48.12 (17) O6—C16—C17—F2 59.68 (14)
C3—C2—C7—O4 48.31 (14) O6—C16—C17—F1 177.50 (10)
C1—C2—C7—O4 −135.84 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···N5 0.88 1.95 2.6410 (13) 135
N2—H2N···N3i 0.88 2.03 2.8998 (12) 172
C9—H9A···O5 0.98 2.42 3.2253 (16) 139
C14—H14B···O3 0.98 2.59 3.4363 (16) 145
C14—H14C···O5ii 0.98 2.42 3.2637 (14) 143
C15—H15A···N4 0.98 2.33 2.7695 (15) 107
C16—H16A···O2iii 0.99 2.55 3.4209 (14) 147
C16—H16B···O1iv 0.99 2.32 3.2325 (14) 153

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, −y+1, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2384).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2008). APEX2, SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Duggleby, R. G., McCourt, J. A. & Guddat, L. W. (2008). Plant Phys. Biochem. 46, 309–324. [DOI] [PubMed]
  5. EFSA (2008). European Food Safety Authority Scientific Report 2008, Vol. 195, pp. 1–115. Conclusion on the peer review of triflusulfuron. www.efsa.europa.eu/en/efsajournal/pub/195r.html.
  6. Liu, Q.-X., Wu, X.-M., Liu, S.-W., Song, H.-B., Wang, X.-G. & Guo, J.-H. (2008). J. Coord. Chem. 61, 2990–2998.
  7. Ma, N., Li, Z.-M., Wang, J.-G. & Song, H.-B. (2003). Acta Cryst. E59, o275–o276.
  8. Ma, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, o438–o440.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. McCourt, J. A., Pang, S. S., Guddat, L. W. & Duggleby, R. G. (2005). Biochemistry, 44, 2330–2338. [DOI] [PubMed]
  11. Moon, M. P. (1989). WO Patent 8909214 A1.
  12. Peeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25–30.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sorokin, V. I., Golosov, S. N., Kornilov, A. N., Yufit, D. S., Struchkov, Yu. T. & Drozd, V. N. (1993). Khim. Get. Soedin. SSSR (Russ.) (Chem. Heterocycl. Compd), pp. 1670–1675.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Wang, B.-L., Ma, N., Wang, J.-G., Ma, Y., Li, Z.-M. & Leng, X.-B. (2004). Jiegou Huaxue, 23, 783–787.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Wittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). Pestic. Biochem. Physiol. 49, 72–81.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023166/gk2384sup1.cif

e-67-o1778-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023166/gk2384Isup2.hkl

e-67-o1778-Isup2.hkl (304.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023166/gk2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES