Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 4;67(Pt 7):m824–m825. doi: 10.1107/S1600536811019829

Di-μ-oxido-bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N,N′,N′′,N′′′)dimangan­ese(III,IV)] bis­(tetra­phenyl­borate) chloride acetonitrile disolvate

Marilyn M Olmstead a,*, David W Boyce a, Lauren E Bria a
PMCID: PMC3151985  PMID: 21836836

Abstract

The title compound, [Mn2O2(C10H24N4)2](C24H20B)2Cl·2CH3CN, is a mixed-valent MnIII/MnIV oxide-bridged mangan­ese dimer with one chloride and two tetra­phenyl­borate counter-anions. There are two non-coordinated mol­ecules of acetonitrile in the formula unit. A center of inversion is present between the two metal atoms, and, consequently, there is no distinction between MnIII and MnIV metal centers. In the Mn2O2 core, the Mn—O distances are 1.817 (3) and 1.821 (3) Å. The cyclam ligand is in the cis configuration. The chloride counter-anion resides on a center of symmetry, whereas the tetra­phenyl­borate counter-anion is in a general position. The cyclam ligand is hydrogen bonded to the acetonitrile as well as to the chloride anion. One of the phenyl rings of the anion and the acetonitrile solvent molecule are each disordered over two sets of sites.

Related literature

For structures of different salts containing the disordered mixed-valent {[(cyclam)MnO]2}3+ cation, see: Goodson et al. (1990); Lu et al. (2001). For structures of the non-disordered MnIII—MnIVO2 core, see: Brewer et al. (1989); Levaton & Olmstead (2010). For cyclam configurations, see: Bosnich et al. (1965).graphic file with name e-67-0m824-scheme1.jpg

Experimental

Crystal data

  • [Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3N

  • M r = 1298.52

  • Triclinic, Inline graphic

  • a = 11.437 (2) Å

  • b = 11.713 (2) Å

  • c = 13.967 (3) Å

  • α = 104.136 (3)°

  • β = 97.697 (3)°

  • γ = 107.627 (3)°

  • V = 1684.9 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 90 K

  • 0.15 × 0.11 × 0.08 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.952, T max = 0.972

  • 17931 measured reflections

  • 6092 independent reflections

  • 4083 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.173

  • S = 1.03

  • 6092 reflections

  • 433 parameters

  • 258 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811019829/hg5039sup1.cif

e-67-0m824-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811019829/hg5039Isup2.hkl

e-67-0m824-Isup2.hkl (298.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 1.817 (3)
Mn1—O1i 1.821 (3)
Mn1—N1 2.187 (5)
Mn1—N2 2.092 (3)
Mn1—N3 2.178 (3)
Mn1—N4 2.116 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.93 2.42 3.313 (11) 160
N1—H1⋯N5B 0.93 1.98 2.832 (10) 151
N2—H2⋯Cl1 0.93 2.37 3.289 (4) 169
N3—H3⋯N5i 0.93 2.22 3.034 (9) 146
N3—H3⋯N5Bi 0.93 2.23 3.120 (9) 160
N4—H4⋯Cl1 0.93 2.42 3.330 (4) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of California, Davis, for acquisition of the Bruker SMART APEXII diffractometer and the support of the Summer Undergraduate Research Program of the University of California, Davis.

supplementary crystallographic information

Comment

In the title compound (Fig. 1), the MnIII—MnIV centrosymmetric, dinuclear cation is bridged by two oxo ligands. Each manganese atom also binds to a tetradentate cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) to achieve a distorted octahedral coordination environment. Due to the center of inversion, there is no distinction between the two different oxidation states in the structure, and it is disordered mixed valent. The dinuclear cation bears a +3 charge, and the charge is balanced by a chloride anion and two tetraphenylborate anions. The chloride resides on a center of symmetry. The configuration of the cyclam ligand is cis-V, in which the N—H bonds alternate above and below the N4 plane (Bosnich et al., 1965).

The structures of similar disordered mixed valent (III/IV) µ-oxo bridged manganese cyclam complexes are reported in Lu, et al., 2001, with two perchlorate and one nitrate anions; Goodson, et al., 1990, with dithionate and thiosulfate anions, and a second structure with three bromides. In the title compound, the Mn2O2 core has Mn—O distances of 1.817 (3) and 1.821 (3) Å. All of the above referenced structures show similar coordination geometry, and the mean Mn—O bond distances in the Mn2O2 core for these complexes is 1.824 Å. A trifluoromethanesulfonate salt (Brewer, et al., 1989) crystallized with discrete MnIII and MnIV metal centers, and these mean Mn—O distances are characteristic of the oxidation states of Mn: MnIII—O, 1.861 Å and MnIV—O, 1.788 Å. Related values were also seen in the structure of a large Mn12 cluster with three units of Mn2O2 core geometry. Average values with average deviations from the mean were MnIII—O, 1.879 (7) Å and MnIV—O, 1.787 (6) Å (Levaton & Olmstead, 2010). Thus, the disordered distances agree well with the average III/IV values.

In the structure of the title compound, all of the available hydrogen atoms bonded to the N atoms in the cyclam ligand participate in hydrogen bonding (Fig. 2 and Table 2). The hydrogen atoms bonded to N atoms N2 and N4 are hydrogen bonded to chloride atom. The hydrogen atoms on N atoms N1 and N3 hydrogen bond to the acetonitrile N atoms.

Experimental

The title compound was obtained while attempting to prepare an azido derivative. To a stirred solution of 1,4,8,11-tetraazacyclotetradecane (cyclam), (200 mg, 1 mmol) in 5 ml of methanol was added a solution of MnCl2.4H2O (200 mg, 1 mmol) in 25 ml of methanol. Over the one hour course of the addition, the reaction color progressed from red to dark green. After stirring for 1 hr an excess of NaN3 (200 mg, 2.5 mmol) was added to the reaction mixture in a solution of 9 ml me thanol and 1 ml H2O. No color change was observed upon addition of the azide. After 20 min of stirring NaBPh4 (350 mg, 1 mmol) was added. Addition of the tetraphenylborate salt caused a precipitate to form and the solution turned red-brown. Subsequently, 18 ml of a 5:1 acetonitrile:water and 10 ml of 0.1 M HClO4 were added. The orange-brown solid was collected by filtration. Dichroic, red-green crystals of the product were obtained by slow evaporation of a toluene solution.

Refinement

The C-bound and N-bound H atoms were positioned geometrically with C—H = 0.95—0.98 Å, N—H = 0.88 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2—1.5 Ueq(C). One of the BPh4- phenyl rings was disordered and was refined in two parts with a rigid group refinement. The acetonitrile molecule was disordered in two parts, each assigned 50% occupancy. Atoms of the disordered acetonitriles were kept isotropic. The atoms of the disordered BPh4- phenyl group were allowed to refine with anisotropic thermal parameters and a similarity restraint (SIMU) of 0.008. The cation displayed large thermal motion and thermal ellipsoids for these atoms were refined with an ISOR 0.01 restraint. An attempt was made to solve and refine the structure in the non-centrosymmetric space group P1 but atoms of the cation became N.P.D.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title complex with displacement parameters drawn at the 30% probability level. Disordered components of the acetonitrile and [BPh4]- group are shown.

Fig. 2.

Fig. 2.

The centrosymmetric dimer of the title cation is shown with H-bonds involving the N—H groups, acetonitriles and chlorides depicted with dashed lines.

Crystal data

[Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3N Z = 1
Mr = 1298.52 F(000) = 689
Triclinic, P1 Dx = 1.280 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.437 (2) Å Cell parameters from 3568 reflections
b = 11.713 (2) Å θ = 2.8–24.6°
c = 13.967 (3) Å µ = 0.47 mm1
α = 104.136 (3)° T = 90 K
β = 97.697 (3)° Block, red
γ = 107.627 (3)° 0.15 × 0.11 × 0.08 mm
V = 1684.9 (6) Å3

Data collection

Bruker SMART APEXII diffractometer 6092 independent reflections
Radiation source: fine-focus sealed tube 4083 reflections with I > 2σ(I)
graphite Rint = 0.064
Detector resolution: 8.3 pixels mm-1 θmax = 25.3°, θmin = 2.8°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.952, Tmax = 0.972 l = −16→16
17931 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.080P)2 + 1.3759P] where P = (Fo2 + 2Fc2)/3
6092 reflections (Δ/σ)max = 0.007
433 parameters Δρmax = 0.54 e Å3
258 restraints Δρmin = −0.81 e Å3

Special details

Experimental. Crystals were dichroic.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.5000 0.5000 0.5000 0.0774 (7)
Mn1 0.11925 (5) 0.50038 (5) 0.50106 (5) 0.0434 (2)
O1 −0.0251 (3) 0.4058 (2) 0.5257 (2) 0.0480 (8)
N1 0.2187 (3) 0.6175 (4) 0.6555 (4) 0.0738 (14)
H1 0.1742 0.6709 0.6738 0.089*
N2 0.2773 (3) 0.6205 (3) 0.4709 (3) 0.0509 (10)
H2 0.3380 0.5826 0.4695 0.061*
N3 0.0891 (3) 0.3830 (3) 0.3463 (2) 0.0357 (7)
H3 0.0049 0.3316 0.3296 0.043*
N4 0.2090 (3) 0.3743 (3) 0.5289 (3) 0.0579 (11)
H4 0.2942 0.4107 0.5312 0.069*
C1 0.3437 (4) 0.7009 (5) 0.6530 (4) 0.0686 (15)
H1B 0.4048 0.6565 0.6528 0.082*
H1C 0.3751 0.7765 0.7130 0.082*
C2 0.3272 (5) 0.7373 (4) 0.5578 (4) 0.0658 (15)
H2A 0.2677 0.7837 0.5590 0.079*
H2B 0.4090 0.7923 0.5518 0.079*
C3 0.2571 (4) 0.6510 (4) 0.3745 (3) 0.0479 (11)
H3A 0.3327 0.7201 0.3744 0.058*
H3B 0.1850 0.6811 0.3705 0.058*
C4 0.2318 (4) 0.5416 (4) 0.2834 (4) 0.0547 (12)
H4A 0.2972 0.5034 0.2925 0.066*
H4B 0.2384 0.5720 0.2234 0.066*
C5 0.1037 (4) 0.4420 (4) 0.2635 (3) 0.0538 (12)
H5A 0.0381 0.4802 0.2554 0.065*
H5B 0.0903 0.3760 0.1991 0.065*
C6 0.1589 (4) 0.2975 (4) 0.3453 (4) 0.0594 (13)
H6A 0.2471 0.3397 0.3428 0.071*
H6B 0.1202 0.2226 0.2849 0.071*
C7 0.1555 (4) 0.2593 (4) 0.4390 (4) 0.0676 (15)
H7A 0.2054 0.2038 0.4417 0.081*
H7B 0.0676 0.2123 0.4393 0.081*
C8 0.1982 (4) 0.3418 (5) 0.6219 (4) 0.0695 (16)
H8A 0.2278 0.2704 0.6209 0.083*
H8B 0.1086 0.3145 0.6256 0.083*
C9 0.2735 (5) 0.4502 (5) 0.7142 (4) 0.0677 (15)
H9A 0.3608 0.4829 0.7057 0.081*
H9B 0.2770 0.4181 0.7735 0.081*
C10 0.2253 (6) 0.5587 (6) 0.7381 (6) 0.098 (2)
H10A 0.1403 0.5281 0.7515 0.117*
H10B 0.2812 0.6235 0.8006 0.117*
B1 0.2591 (4) −0.1045 (4) 0.1854 (3) 0.0326 (9)
C11 0.3193 (5) 0.0254 (4) 0.1481 (3) 0.0315 (16) 0.542 (4)
C12 0.3289 (5) 0.1438 (5) 0.2064 (3) 0.0257 (15) 0.542 (4)
H12 0.3015 0.1535 0.2682 0.031* 0.542 (4)
C13 0.3786 (5) 0.2481 (4) 0.1743 (4) 0.0308 (17) 0.542 (4)
H13 0.3852 0.3291 0.2141 0.037* 0.542 (4)
C14 0.4187 (5) 0.2339 (4) 0.0838 (4) 0.0334 (15) 0.542 (4)
H14 0.4527 0.3051 0.0618 0.040* 0.542 (4)
C15 0.4090 (4) 0.1154 (4) 0.0255 (3) 0.0401 (16) 0.542 (4)
H15 0.4364 0.1057 −0.0363 0.048* 0.542 (4)
C16 0.3593 (5) 0.0112 (3) 0.0577 (3) 0.0356 (15) 0.542 (4)
H16 0.3527 −0.0698 0.0178 0.043* 0.542 (4)
C11B 0.3432 (5) 0.0282 (5) 0.1656 (4) 0.0263 (17) 0.458 (4)
C12B 0.2979 (5) 0.1267 (7) 0.1898 (5) 0.0306 (19) 0.458 (4)
H12B 0.2276 0.1178 0.2203 0.037* 0.458 (4)
C13B 0.3555 (6) 0.2381 (5) 0.1693 (5) 0.0330 (19) 0.458 (4)
H13B 0.3245 0.3054 0.1858 0.040* 0.458 (4)
C14B 0.4583 (5) 0.2511 (4) 0.1246 (4) 0.0325 (18) 0.458 (4)
H14B 0.4977 0.3273 0.1106 0.039* 0.458 (4)
C15B 0.5037 (5) 0.1527 (5) 0.1004 (4) 0.0371 (17) 0.458 (4)
H15B 0.5740 0.1615 0.0698 0.045* 0.458 (4)
C16B 0.4461 (5) 0.0412 (4) 0.1209 (4) 0.0309 (16) 0.458 (4)
H16B 0.4771 −0.0261 0.1043 0.037* 0.458 (4)
C17 0.3410 (3) −0.1988 (3) 0.1658 (3) 0.0321 (8)
C18 0.4455 (4) −0.1898 (4) 0.2359 (3) 0.0385 (9)
H18 0.4718 −0.1249 0.2987 0.046*
C19 0.5126 (4) −0.2704 (4) 0.2186 (3) 0.0434 (10)
H19 0.5823 −0.2602 0.2694 0.052*
C20 0.4795 (4) −0.3655 (4) 0.1283 (3) 0.0413 (9)
H20 0.5247 −0.4216 0.1163 0.050*
C21 0.3785 (4) −0.3764 (3) 0.0563 (3) 0.0387 (9)
H21 0.3543 −0.4401 −0.0071 0.046*
C22 0.3121 (3) −0.2956 (3) 0.0752 (3) 0.0350 (9)
H22 0.2427 −0.3065 0.0238 0.042*
C23 0.1172 (3) −0.1789 (3) 0.1131 (3) 0.0338 (8)
C24 0.0576 (4) −0.1332 (4) 0.0454 (3) 0.0405 (9)
H24 0.1015 −0.0532 0.0393 0.049*
C25 −0.0642 (4) −0.2001 (4) −0.0140 (3) 0.0444 (10)
H25 −0.1010 −0.1655 −0.0595 0.053*
C26 −0.1310 (4) −0.3161 (4) −0.0067 (3) 0.0428 (10)
H26 −0.2145 −0.3611 −0.0458 0.051*
C27 −0.0750 (4) −0.3662 (4) 0.0581 (3) 0.0403 (9)
H27 −0.1190 −0.4469 0.0626 0.048*
C28 0.0459 (3) −0.2981 (3) 0.1165 (3) 0.0357 (9)
H28 0.0822 −0.3340 0.1611 0.043*
C29 0.2486 (3) −0.0639 (3) 0.3049 (3) 0.0291 (8)
C30 0.1384 (3) −0.0995 (3) 0.3392 (3) 0.0341 (8)
H30 0.0621 −0.1500 0.2908 0.041*
C31 0.1344 (4) −0.0647 (3) 0.4414 (3) 0.0393 (9)
H31 0.0564 −0.0909 0.4608 0.047*
C32 0.2429 (4) 0.0075 (3) 0.5140 (3) 0.0380 (9)
H32 0.2413 0.0289 0.5838 0.046*
C33 0.3534 (4) 0.0479 (3) 0.4835 (3) 0.0373 (9)
H33 0.4290 0.0997 0.5323 0.045*
C34 0.3548 (3) 0.0130 (3) 0.3813 (3) 0.0353 (9)
H34 0.4325 0.0432 0.3624 0.042*
N5 0.1329 (9) 0.8609 (9) 0.7468 (7) 0.053 (2)* 0.50
C35 0.1548 (8) 0.9672 (8) 0.7751 (6) 0.0402 (18)* 0.50
C36 0.1803 (8) 1.0976 (8) 0.8123 (7) 0.050 (2)* 0.50
H36A 0.1058 1.1123 0.8322 0.076* 0.50
H36B 0.2014 1.1365 0.7593 0.076* 0.50
H36C 0.2514 1.1346 0.8713 0.076* 0.50
N5B 0.1679 (8) 0.8389 (8) 0.7379 (6) 0.047 (2)* 0.50
C35B 0.2034 (8) 0.9323 (8) 0.7992 (6) 0.0432 (19)* 0.50
C36B 0.2519 (9) 1.0513 (9) 0.8797 (7) 0.059 (2)* 0.50
H36D 0.2796 1.0372 0.9440 0.088* 0.50
H36E 0.1856 1.0877 0.8854 0.088* 0.50
H36F 0.3234 1.1091 0.8641 0.088* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0257 (8) 0.0762 (12) 0.1513 (19) 0.0152 (8) 0.0083 (9) 0.0805 (13)
Mn1 0.0283 (3) 0.0300 (3) 0.0637 (4) −0.0002 (2) −0.0153 (3) 0.0263 (3)
O1 0.0452 (16) 0.0273 (13) 0.0557 (17) −0.0017 (12) −0.0218 (13) 0.0209 (13)
N1 0.034 (2) 0.083 (3) 0.134 (4) 0.026 (2) 0.020 (2) 0.079 (3)
N2 0.0361 (18) 0.0423 (19) 0.070 (2) 0.0029 (15) −0.0116 (17) 0.0352 (18)
N3 0.0269 (16) 0.0314 (16) 0.0460 (19) 0.0098 (13) 0.0047 (14) 0.0092 (14)
N4 0.0307 (18) 0.045 (2) 0.097 (3) 0.0030 (15) −0.0096 (18) 0.045 (2)
C1 0.032 (2) 0.086 (4) 0.081 (3) 0.002 (2) −0.006 (2) 0.047 (3)
C2 0.052 (3) 0.049 (3) 0.065 (3) −0.020 (2) −0.023 (2) 0.030 (2)
C3 0.043 (2) 0.041 (2) 0.065 (3) 0.0157 (19) 0.001 (2) 0.029 (2)
C4 0.051 (3) 0.047 (2) 0.078 (3) 0.020 (2) 0.034 (2) 0.026 (2)
C5 0.061 (3) 0.054 (3) 0.040 (2) 0.010 (2) 0.019 (2) 0.013 (2)
C6 0.041 (2) 0.039 (2) 0.094 (4) 0.019 (2) 0.011 (2) 0.009 (2)
C7 0.044 (3) 0.032 (2) 0.120 (4) 0.011 (2) −0.013 (3) 0.030 (3)
C8 0.037 (2) 0.070 (3) 0.115 (4) 0.012 (2) −0.001 (3) 0.070 (3)
C9 0.068 (3) 0.092 (4) 0.089 (4) 0.053 (3) 0.035 (3) 0.068 (3)
C10 0.099 (4) 0.115 (4) 0.154 (5) 0.072 (4) 0.082 (4) 0.100 (4)
B1 0.033 (2) 0.026 (2) 0.032 (2) 0.0078 (18) 0.0034 (18) 0.0023 (18)
C11 0.020 (3) 0.033 (3) 0.030 (3) 0.006 (2) −0.005 (2) 0.001 (2)
C12 0.014 (3) 0.028 (3) 0.027 (3) 0.005 (2) −0.007 (2) 0.006 (2)
C13 0.021 (3) 0.030 (3) 0.036 (3) 0.007 (2) −0.005 (3) 0.007 (3)
C14 0.025 (3) 0.039 (3) 0.038 (3) 0.010 (2) 0.000 (3) 0.022 (2)
C15 0.035 (3) 0.046 (3) 0.042 (3) 0.018 (3) 0.007 (3) 0.015 (3)
C16 0.034 (3) 0.037 (3) 0.034 (3) 0.013 (2) 0.006 (2) 0.010 (2)
C11B 0.028 (3) 0.028 (3) 0.021 (3) 0.012 (2) −0.006 (3) 0.009 (2)
C12B 0.023 (3) 0.030 (3) 0.027 (3) 0.006 (3) −0.011 (3) 0.002 (3)
C13B 0.024 (3) 0.032 (3) 0.034 (3) 0.010 (3) −0.010 (3) 0.005 (3)
C14B 0.033 (3) 0.033 (3) 0.024 (3) 0.005 (3) −0.006 (3) 0.009 (3)
C15B 0.037 (3) 0.039 (3) 0.032 (3) 0.010 (3) 0.007 (3) 0.010 (3)
C16B 0.033 (3) 0.032 (3) 0.027 (3) 0.014 (3) 0.003 (3) 0.006 (3)
C17 0.0302 (19) 0.0253 (18) 0.035 (2) 0.0055 (15) 0.0050 (16) 0.0053 (15)
C18 0.034 (2) 0.036 (2) 0.038 (2) 0.0101 (17) 0.0039 (17) 0.0038 (17)
C19 0.038 (2) 0.044 (2) 0.047 (2) 0.0149 (19) 0.0024 (18) 0.014 (2)
C20 0.043 (2) 0.035 (2) 0.049 (2) 0.0177 (18) 0.0129 (19) 0.0111 (19)
C21 0.042 (2) 0.0259 (19) 0.043 (2) 0.0102 (17) 0.0102 (18) 0.0023 (17)
C22 0.032 (2) 0.0282 (19) 0.037 (2) 0.0063 (16) 0.0026 (16) 0.0037 (16)
C23 0.038 (2) 0.0288 (19) 0.0294 (19) 0.0145 (17) 0.0036 (16) −0.0010 (15)
C24 0.045 (2) 0.032 (2) 0.038 (2) 0.0120 (18) −0.0007 (18) 0.0047 (17)
C25 0.045 (2) 0.042 (2) 0.039 (2) 0.018 (2) −0.0056 (18) 0.0048 (18)
C26 0.036 (2) 0.039 (2) 0.038 (2) 0.0102 (18) −0.0070 (18) −0.0029 (18)
C27 0.037 (2) 0.032 (2) 0.042 (2) 0.0108 (17) −0.0014 (18) −0.0001 (17)
C28 0.032 (2) 0.032 (2) 0.035 (2) 0.0112 (16) −0.0029 (16) 0.0024 (16)
C29 0.0282 (19) 0.0228 (17) 0.034 (2) 0.0090 (15) 0.0036 (15) 0.0065 (15)
C30 0.031 (2) 0.0270 (18) 0.040 (2) 0.0086 (16) 0.0029 (16) 0.0073 (16)
C31 0.042 (2) 0.033 (2) 0.051 (2) 0.0133 (18) 0.0187 (19) 0.0204 (18)
C32 0.056 (3) 0.035 (2) 0.031 (2) 0.0222 (19) 0.0103 (18) 0.0146 (17)
C33 0.037 (2) 0.036 (2) 0.033 (2) 0.0134 (17) −0.0016 (17) 0.0041 (17)
C34 0.032 (2) 0.035 (2) 0.033 (2) 0.0094 (16) 0.0041 (16) 0.0040 (16)

Geometric parameters (Å, °)

Mn1—O1 1.817 (3) C15—C16 1.3900
Mn1—O1i 1.821 (3) C15—H15 0.9500
Mn1—N1 2.187 (5) C16—H16 0.9500
Mn1—N2 2.092 (3) C11B—C12B 1.3900
Mn1—N3 2.178 (3) C11B—C16B 1.3900
Mn1—N4 2.116 (3) C12B—C13B 1.3900
Mn1—Mn1i 2.7211 (13) C12B—H12B 0.9500
N1—C1 1.478 (6) C13B—C14B 1.3900
N1—C10 1.485 (7) C13B—H13B 0.9500
N1—H1 0.9300 C14B—C15B 1.3900
N2—C3 1.482 (5) C14B—H14B 0.9500
N2—C2 1.484 (6) C15B—C16B 1.3900
N2—H2 0.9300 C15B—H15B 0.9500
N3—C6 1.456 (5) C16B—H16B 0.9500
N3—C5 1.488 (5) C17—C18 1.399 (5)
N3—H3 0.9300 C17—C22 1.399 (5)
N4—C8 1.450 (6) C18—C19 1.385 (5)
N4—C7 1.495 (6) C18—H18 0.9500
N4—H4 0.9300 C19—C20 1.380 (6)
C1—C2 1.497 (6) C19—H19 0.9500
C1—H1B 0.9900 C20—C21 1.379 (5)
C1—H1C 0.9900 C20—H20 0.9500
C2—H2A 0.9900 C21—C22 1.382 (5)
C2—H2B 0.9900 C21—H21 0.9500
C3—C4 1.492 (6) C22—H22 0.9500
C3—H3A 0.9900 C23—C24 1.393 (5)
C3—H3B 0.9900 C23—C28 1.404 (5)
C4—C5 1.511 (6) C24—C25 1.398 (5)
C4—H4A 0.9900 C24—H24 0.9500
C4—H4B 0.9900 C25—C26 1.379 (6)
C5—H5A 0.9900 C25—H25 0.9500
C5—H5B 0.9900 C26—C27 1.379 (5)
C6—C7 1.484 (7) C26—H26 0.9500
C6—H6A 0.9900 C27—C28 1.387 (5)
C6—H6B 0.9900 C27—H27 0.9500
C7—H7A 0.9900 C28—H28 0.9500
C7—H7B 0.9900 C29—C30 1.391 (5)
C8—C9 1.503 (7) C29—C34 1.395 (5)
C8—H8A 0.9900 C30—C31 1.396 (5)
C8—H8B 0.9900 C30—H30 0.9500
C9—C10 1.516 (7) C31—C32 1.375 (5)
C9—H9A 0.9900 C31—H31 0.9500
C9—H9B 0.9900 C32—C33 1.372 (6)
C10—H10A 0.9900 C32—H32 0.9500
C10—H10B 0.9900 C33—C34 1.389 (5)
B1—C23 1.639 (5) C33—H33 0.9500
B1—C17 1.649 (5) C34—H34 0.9500
B1—C29 1.651 (5) N5—C35 1.146 (11)
B1—C11B 1.672 (6) C35—C36 1.411 (11)
B1—C11 1.705 (6) C36—H36A 0.9800
C11—C12 1.3900 C36—H36B 0.9800
C11—C16 1.3900 C36—H36C 0.9800
C12—C13 1.3900 N5B—C35B 1.129 (11)
C12—H12 0.9500 C35B—C36B 1.454 (12)
C13—C14 1.3900 C36B—H36D 0.9800
C13—H13 0.9500 C36B—H36E 0.9800
C14—C15 1.3900 C36B—H36F 0.9800
C14—H14 0.9500
O1—Mn1—O1i 83.18 (11) C17—B1—C11B 106.0 (4)
O1—Mn1—N1 100.05 (14) C29—B1—C11B 105.6 (3)
O1—Mn1—N2 174.88 (13) C23—B1—C11 105.4 (3)
O1—Mn1—N3 95.63 (12) C17—B1—C11 111.8 (3)
O1—Mn1—N4 90.76 (13) C29—B1—C11 110.7 (3)
O1i—Mn1—N1 97.81 (13) C12—C11—C16 120.0
O1i—Mn1—N2 91.73 (13) C12—C11—B1 121.2 (3)
O1i—Mn1—N3 97.79 (12) C16—C11—B1 118.8 (3)
O1i—Mn1—N4 173.47 (12) C13—C12—C11 120.0
N1—Mn1—N2 80.14 (14) C13—C12—H12 120.0
N1—Mn1—N3 159.04 (14) C11—C12—H12 120.0
N1—Mn1—N4 85.59 (15) C12—C13—C14 120.0
N2—Mn1—N3 85.49 (13) C12—C13—H13 120.0
N2—Mn1—N4 94.35 (14) C14—C13—H13 120.0
N3—Mn1—N4 80.34 (14) C15—C14—C13 120.0
Mn1—O1—Mn1i 96.82 (11) C15—C14—H14 120.0
C1—N1—C10 112.3 (4) C13—C14—H14 120.0
C1—N1—Mn1 108.9 (3) C14—C15—C16 120.0
C10—N1—Mn1 119.8 (4) C14—C15—H15 120.0
C1—N1—H1 104.8 C16—C15—H15 120.0
C10—N1—H1 104.8 C15—C16—C11 120.0
Mn1—N1—H1 104.8 C15—C16—H16 120.0
C3—N2—C2 110.2 (3) C11—C16—H16 120.0
C3—N2—Mn1 116.2 (2) C12B—C11B—C16B 120.0
C2—N2—Mn1 107.2 (3) C12B—C11B—B1 115.4 (4)
C3—N2—H2 107.7 C16B—C11B—B1 124.5 (4)
C2—N2—H2 107.7 C13B—C12B—C11B 120.0
Mn1—N2—H2 107.7 C13B—C12B—H12B 120.0
C6—N3—C5 112.2 (3) C11B—C12B—H12B 120.0
C6—N3—Mn1 109.4 (3) C12B—C13B—C14B 120.0
C5—N3—Mn1 119.7 (2) C12B—C13B—H13B 120.0
C6—N3—H3 104.7 C14B—C13B—H13B 120.0
C5—N3—H3 104.7 C15B—C14B—C13B 120.0
Mn1—N3—H3 104.7 C15B—C14B—H14B 120.0
C8—N4—C7 110.7 (4) C13B—C14B—H14B 120.0
C8—N4—Mn1 115.8 (3) C14B—C15B—C16B 120.0
C7—N4—Mn1 106.5 (2) C14B—C15B—H15B 120.0
C8—N4—H4 107.8 C16B—C15B—H15B 120.0
C7—N4—H4 107.8 C15B—C16B—C11B 120.0
Mn1—N4—H4 107.8 C15B—C16B—H16B 120.0
N1—C1—C2 106.8 (4) C11B—C16B—H16B 120.0
N1—C1—H1B 110.4 C18—C17—C22 113.6 (3)
C2—C1—H1B 110.4 C18—C17—B1 124.2 (3)
N1—C1—H1C 110.4 C22—C17—B1 122.2 (3)
C2—C1—H1C 110.4 C19—C18—C17 123.4 (4)
H1B—C1—H1C 108.6 C19—C18—H18 118.3
N2—C2—C1 107.9 (4) C17—C18—H18 118.3
N2—C2—H2A 110.1 C20—C19—C18 120.8 (4)
C1—C2—H2A 110.1 C20—C19—H19 119.6
N2—C2—H2B 110.1 C18—C19—H19 119.6
C1—C2—H2B 110.1 C21—C20—C19 117.7 (4)
H2A—C2—H2B 108.4 C21—C20—H20 121.1
N2—C3—C4 113.0 (3) C19—C20—H20 121.1
N2—C3—H3A 109.0 C20—C21—C22 120.7 (4)
C4—C3—H3A 109.0 C20—C21—H21 119.7
N2—C3—H3B 109.0 C22—C21—H21 119.7
C4—C3—H3B 109.0 C21—C22—C17 123.8 (3)
H3A—C3—H3B 107.8 C21—C22—H22 118.1
C3—C4—C5 113.3 (4) C17—C22—H22 118.1
C3—C4—H4A 108.9 C24—C23—C28 114.8 (3)
C5—C4—H4A 108.9 C24—C23—B1 125.1 (3)
C3—C4—H4B 108.9 C28—C23—B1 120.2 (3)
C5—C4—H4B 108.9 C23—C24—C25 122.8 (4)
H4A—C4—H4B 107.7 C23—C24—H24 118.6
N3—C5—C4 112.7 (4) C25—C24—H24 118.6
N3—C5—H5A 109.1 C26—C25—C24 120.1 (4)
C4—C5—H5A 109.1 C26—C25—H25 119.9
N3—C5—H5B 109.1 C24—C25—H25 119.9
C4—C5—H5B 109.1 C25—C26—C27 119.2 (4)
H5A—C5—H5B 107.8 C25—C26—H26 120.4
N3—C6—C7 108.2 (4) C27—C26—H26 120.4
N3—C6—H6A 110.1 C26—C27—C28 119.8 (4)
C7—C6—H6A 110.1 C26—C27—H27 120.1
N3—C6—H6B 110.1 C28—C27—H27 120.1
C7—C6—H6B 110.1 C27—C28—C23 123.4 (4)
H6A—C6—H6B 108.4 C27—C28—H28 118.3
C6—C7—N4 109.0 (3) C23—C28—H28 118.3
C6—C7—H7A 109.9 C30—C29—C34 114.1 (3)
N4—C7—H7A 109.9 C30—C29—B1 125.2 (3)
C6—C7—H7B 109.9 C34—C29—B1 120.7 (3)
N4—C7—H7B 109.9 C29—C30—C31 123.2 (3)
H7A—C7—H7B 108.3 C29—C30—H30 118.4
N4—C8—C9 112.1 (4) C31—C30—H30 118.4
N4—C8—H8A 109.2 C32—C31—C30 120.2 (4)
C9—C8—H8A 109.2 C32—C31—H31 119.9
N4—C8—H8B 109.2 C30—C31—H31 119.9
C9—C8—H8B 109.2 C33—C32—C31 118.7 (4)
H8A—C8—H8B 107.9 C33—C32—H32 120.7
C8—C9—C10 116.1 (5) C31—C32—H32 120.7
C8—C9—H9A 108.3 C32—C33—C34 120.0 (4)
C10—C9—H9A 108.3 C32—C33—H33 120.0
C8—C9—H9B 108.3 C34—C33—H33 120.0
C10—C9—H9B 108.3 C33—C34—C29 123.7 (4)
H9A—C9—H9B 107.4 C33—C34—H34 118.1
N1—C10—C9 113.5 (5) C29—C34—H34 118.1
N1—C10—H10A 108.9 N5—C35—C36 178.4 (10)
C9—C10—H10A 108.9 N5B—C35B—C36B 178.2 (11)
N1—C10—H10B 108.9 C35B—C36B—H36D 109.5
C9—C10—H10B 108.9 C35B—C36B—H36E 109.5
H10A—C10—H10B 107.7 H36D—C36B—H36E 109.5
C23—B1—C17 108.1 (3) C35B—C36B—H36F 109.5
C23—B1—C29 109.1 (3) H36D—C36B—H36F 109.5
C17—B1—C29 111.6 (3) H36E—C36B—H36F 109.5
C23—B1—C11B 116.5 (4)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N5 0.93 2.42 3.313 (11) 160
N1—H1···N5B 0.93 1.98 2.832 (10) 151
N2—H2···Cl1 0.93 2.37 3.289 (4) 169
N3—H3···N5i 0.93 2.22 3.034 (9) 146
N3—H3···N5Bi 0.93 2.23 3.120 (9) 160
N4—H4···Cl1 0.93 2.42 3.330 (4) 168

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5039).

References

  1. Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.
  2. Brewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446–4451.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Goodson, P. A., Hodgson, D. J. & Michelsen, K. (1990). Inorg. Chim. Acta, 172, 49–57.
  5. Levaton, B. B. & Olmstead, M. M. (2010). Acta Cryst. E66, m1226–m1227. [DOI] [PMC free article] [PubMed]
  6. Lu, Y.-H., Fun, H.-K., Chantrapromma, S., Razak, I. A., Shen, Z., Zuo, J.-L. & You, X.-Z. (2001). Acta Cryst. C57, 911–913. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811019829/hg5039sup1.cif

e-67-0m824-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811019829/hg5039Isup2.hkl

e-67-0m824-Isup2.hkl (298.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES