Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1702. doi: 10.1107/S1600536811021854

1-(5,5-Dioxido-10H-phenothia­zin-10-yl)ethanone

M S Siddegowda a, Jerry P Jasinski b,*, James A Golen b, H S Yathirajan a
PMCID: PMC3151987  PMID: 21837098

Abstract

In the title compound, C14H11NO3S, the six-membered thia­zine ring fused to two benzene rings adopts a distorted boat conformation. The dihedral angle between the mean planes of the two benzene rings is 45.8 (1)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For synthetic dyes and electroluminescent materials containing phenothia­zine, see: Miller et al. (1999). For anti­psychotic drugs, see: Wermuth et al. (2003). For applications of phenothia­zine derivatives in medicine, see: Wang et al. (2008). For their anti­tumor activity, see: Lam et al. (2001). For related structures, see: Harrison et al. (2007); Jasinski et al. (2011). For standard bond lengths, see Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o1702-scheme1.jpg

Experimental

Crystal data

  • C14H11NO3S

  • M r = 273.30

  • Monoclinic, Inline graphic

  • a = 12.5715 (6) Å

  • b = 8.7648 (4) Å

  • c = 11.5828 (5) Å

  • β = 92.142 (4)°

  • V = 1275.38 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.35 × 0.15 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.916, T max = 0.963

  • 5342 measured reflections

  • 2597 independent reflections

  • 2263 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.02

  • 2597 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811021854/yk2011sup1.cif

e-67-o1702-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021854/yk2011Isup2.hkl

e-67-o1702-Isup2.hkl (127.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021854/yk2011Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.95 2.50 3.246 (2) 135
C8—H8A⋯O1ii 0.95 2.54 3.376 (2) 147
C9—H9A⋯O3ii 0.95 2.56 3.322 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Phenothiazine is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g. chlorpromazine and antihistaminic drugs, e.g. promethazine (Wermuth, 2003). Recently, researchers have found some new applications for phenothiazine derivatives in medicine related to antitubercular (Wang et al., 2008) and antitumor activities (Lam et al., 2001). The title compound has been used in the synthesis of oxomemazine, an antihistamine and anticholinergic drug of the phenothiazine chemical class used for the treatment of coughs. The crystal structures of dioxopromethazinium picrate (Harrison et al., 2007) and 1-(10H-phenothiazin-2-yl)ethanone (Jasinski et al., 2011) have been reported. In view of the importance of phenothiazines, this paper reports the crystal structure of the title compound, C14H11NO3S.

In the title compound the six-membered thiazine ring fused to two benzene rings adopts a distorted boat conformation. (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.6257 (12) Å, 95.85 (13)° and 180.29 (15)°, respectively (Fig. 1). For an ideal boat θ and φ have values of 90.0° and 180°. The dihedral angle between the mean planes of the two benzene rings is 45.8 (1)°. The ethanone group extends away from corner of the boat crease with a -169.76 (14)° (C6/N1/C13/C14) torsion angle. The SO2 group extends away from the opposite corner of the boat crease with a 105.8 (14)° (C2/C1/S1/O1) torsion angle. Bond lengths are in normal ranges (Allenet al., 1987). Crystal packing is stabiized by weak C—H···O (Table 1, Fig. 2) intermolecular interactions.

Experimental

The title compound was obtained as a gift sample from RL Fine Chem, Bangalore, India. X-ray quality crystals were obtained by slow evaporation of solution of a 1:1 mixture of acetone:ethanol (m.p.: 495 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH) or 1.49 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the c axis. Dashed lines indicate weak C—H···O intermolecular interactions.

Crystal data

C14H11NO3S F(000) = 568
Mr = 273.30 Dx = 1.423 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3700 reflections
a = 12.5715 (6) Å θ = 3.3–32.3°
b = 8.7648 (4) Å µ = 0.26 mm1
c = 11.5828 (5) Å T = 173 K
β = 92.142 (4)° Block, colorless
V = 1275.38 (10) Å3 0.35 × 0.15 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 2597 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2263 reflections with I > 2σ(I)
graphite Rint = 0.019
Detector resolution: 16.1500 pixels mm-1 θmax = 26.4°, θmin = 3.3°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −10→10
Tmin = 0.916, Tmax = 0.963 l = −14→13
5342 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3216P] where P = (Fo2 + 2Fc2)/3
2597 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.27860 (3) 0.53431 (4) 0.88913 (3) 0.03458 (15)
O1 0.18673 (10) 0.57759 (15) 0.95043 (10) 0.0481 (3)
O2 0.34587 (11) 0.41839 (15) 0.93886 (12) 0.0552 (4)
O3 0.14803 (10) 0.98466 (14) 0.75069 (12) 0.0492 (3)
N1 0.22033 (10) 0.75636 (14) 0.71011 (11) 0.0301 (3)
C1 0.35385 (12) 0.69784 (18) 0.86054 (13) 0.0330 (3)
C2 0.44865 (13) 0.7260 (2) 0.92270 (15) 0.0441 (4)
H2B 0.4745 0.6564 0.9801 0.053*
C3 0.50395 (14) 0.8569 (2) 0.89904 (17) 0.0521 (5)
H3A 0.5685 0.8793 0.9410 0.063*
C4 0.46595 (15) 0.9559 (2) 0.81450 (18) 0.0523 (5)
H4A 0.5045 1.0467 0.7999 0.063*
C5 0.37288 (14) 0.9262 (2) 0.75021 (15) 0.0415 (4)
H5A 0.3487 0.9941 0.6909 0.050*
C6 0.31596 (11) 0.79526 (17) 0.77439 (13) 0.0307 (3)
C7 0.21083 (11) 0.60193 (17) 0.67173 (13) 0.0303 (3)
C8 0.18008 (14) 0.5650 (2) 0.55873 (15) 0.0413 (4)
H8A 0.1651 0.6434 0.5038 0.050*
C9 0.17142 (16) 0.4131 (2) 0.52666 (16) 0.0486 (5)
H9A 0.1488 0.3881 0.4498 0.058*
C10 0.19506 (15) 0.2974 (2) 0.60424 (16) 0.0470 (4)
H10A 0.1866 0.1939 0.5814 0.056*
C11 0.23104 (13) 0.33228 (18) 0.71510 (15) 0.0388 (4)
H11A 0.2510 0.2536 0.7680 0.047*
C12 0.23754 (12) 0.48386 (17) 0.74801 (13) 0.0301 (3)
C13 0.13555 (12) 0.85896 (18) 0.70914 (14) 0.0355 (4)
C14 0.03011 (14) 0.8073 (2) 0.65925 (19) 0.0527 (5)
H14A −0.0254 0.8789 0.6816 0.079*
H14B 0.0140 0.7054 0.6886 0.079*
H14C 0.0326 0.8039 0.5748 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0430 (2) 0.0320 (2) 0.0286 (2) 0.00086 (16) −0.00171 (16) 0.00387 (15)
O1 0.0580 (8) 0.0502 (7) 0.0371 (6) −0.0057 (6) 0.0143 (6) −0.0048 (6)
O2 0.0673 (9) 0.0431 (7) 0.0538 (8) 0.0057 (6) −0.0169 (7) 0.0151 (6)
O3 0.0556 (8) 0.0313 (6) 0.0604 (8) 0.0070 (5) −0.0022 (6) −0.0060 (6)
N1 0.0334 (6) 0.0253 (6) 0.0311 (6) −0.0007 (5) −0.0050 (5) 0.0007 (5)
C1 0.0332 (7) 0.0339 (8) 0.0319 (8) 0.0001 (6) −0.0005 (6) −0.0033 (6)
C2 0.0391 (8) 0.0518 (10) 0.0406 (9) 0.0034 (8) −0.0086 (7) −0.0069 (8)
C3 0.0363 (9) 0.0687 (13) 0.0509 (11) −0.0097 (9) −0.0056 (8) −0.0147 (10)
C4 0.0475 (10) 0.0565 (12) 0.0532 (11) −0.0216 (9) 0.0068 (9) −0.0083 (9)
C5 0.0473 (9) 0.0389 (9) 0.0385 (9) −0.0100 (7) 0.0036 (7) 0.0000 (7)
C6 0.0322 (7) 0.0300 (7) 0.0299 (7) −0.0021 (6) 0.0011 (6) −0.0044 (6)
C7 0.0310 (7) 0.0268 (7) 0.0330 (8) −0.0024 (6) −0.0006 (6) −0.0009 (6)
C8 0.0534 (10) 0.0380 (9) 0.0321 (8) −0.0081 (8) −0.0040 (7) 0.0014 (7)
C9 0.0667 (12) 0.0443 (10) 0.0346 (9) −0.0121 (9) −0.0004 (8) −0.0097 (8)
C10 0.0620 (11) 0.0310 (9) 0.0485 (10) −0.0071 (8) 0.0104 (9) −0.0115 (8)
C11 0.0467 (9) 0.0269 (8) 0.0432 (9) 0.0013 (7) 0.0080 (7) −0.0001 (7)
C12 0.0326 (7) 0.0280 (7) 0.0297 (7) 0.0006 (6) 0.0031 (6) −0.0008 (6)
C13 0.0401 (8) 0.0311 (8) 0.0351 (8) 0.0023 (6) 0.0018 (6) 0.0060 (7)
C14 0.0363 (9) 0.0519 (11) 0.0697 (13) 0.0035 (8) −0.0019 (9) 0.0010 (10)

Geometric parameters (Å, °)

S1—O2 1.4292 (13) C5—C6 1.387 (2)
S1—O1 1.4294 (13) C5—H5A 0.9500
S1—C12 1.7524 (16) C7—C8 1.389 (2)
S1—C1 1.7557 (16) C7—C12 1.394 (2)
O3—C13 1.210 (2) C8—C9 1.386 (2)
N1—C13 1.394 (2) C8—H8A 0.9500
N1—C7 1.4283 (19) C9—C10 1.380 (3)
N1—C6 1.4314 (19) C9—H9A 0.9500
C1—C6 1.384 (2) C10—C11 1.380 (2)
C1—C2 1.391 (2) C10—H10A 0.9500
C2—C3 1.374 (3) C11—C12 1.384 (2)
C2—H2B 0.9500 C11—H11A 0.9500
C3—C4 1.380 (3) C13—C14 1.496 (2)
C3—H3A 0.9500 C14—H14A 0.9800
C4—C5 1.388 (3) C14—H14B 0.9800
C4—H4A 0.9500 C14—H14C 0.9800
O2—S1—O1 117.73 (8) C8—C7—C12 118.45 (14)
O2—S1—C12 110.23 (8) C8—C7—N1 122.08 (14)
O1—S1—C12 108.36 (7) C12—C7—N1 119.41 (13)
O2—S1—C1 109.97 (8) C9—C8—C7 119.52 (16)
O1—S1—C1 109.16 (7) C9—C8—H8A 120.2
C12—S1—C1 99.91 (7) C7—C8—H8A 120.2
C13—N1—C7 123.62 (12) C10—C9—C8 121.26 (16)
C13—N1—C6 118.52 (13) C10—C9—H9A 119.4
C7—N1—C6 116.52 (12) C8—C9—H9A 119.4
C6—C1—C2 121.92 (15) C11—C10—C9 119.88 (16)
C6—C1—S1 117.79 (11) C11—C10—H10A 120.1
C2—C1—S1 120.29 (13) C9—C10—H10A 120.1
C3—C2—C1 118.35 (17) C10—C11—C12 118.89 (16)
C3—C2—H2B 120.8 C10—C11—H11A 120.6
C1—C2—H2B 120.8 C12—C11—H11A 120.6
C2—C3—C4 120.13 (17) C11—C12—C7 121.87 (15)
C2—C3—H3A 119.9 C11—C12—S1 120.77 (12)
C4—C3—H3A 119.9 C7—C12—S1 117.36 (11)
C3—C4—C5 121.69 (17) O3—C13—N1 119.75 (15)
C3—C4—H4A 119.2 O3—C13—C14 121.93 (15)
C5—C4—H4A 119.2 N1—C13—C14 118.29 (14)
C6—C5—C4 118.54 (17) C13—C14—H14A 109.5
C6—C5—H5A 120.7 C13—C14—H14B 109.5
C4—C5—H5A 120.7 H14A—C14—H14B 109.5
C1—C6—C5 119.33 (14) C13—C14—H14C 109.5
C1—C6—N1 119.19 (13) H14A—C14—H14C 109.5
C5—C6—N1 121.45 (14) H14B—C14—H14C 109.5
O2—S1—C1—C6 154.78 (12) C13—N1—C7—C12 −121.42 (16)
O1—S1—C1—C6 −74.65 (14) C6—N1—C7—C12 45.13 (19)
C12—S1—C1—C6 38.88 (13) C12—C7—C8—C9 3.4 (2)
O2—S1—C1—C2 −24.71 (16) N1—C7—C8—C9 −179.49 (16)
O1—S1—C1—C2 105.85 (14) C7—C8—C9—C10 −1.5 (3)
C12—S1—C1—C2 −140.62 (14) C8—C9—C10—C11 −1.9 (3)
C6—C1—C2—C3 1.8 (3) C9—C10—C11—C12 3.3 (3)
S1—C1—C2—C3 −178.75 (14) C10—C11—C12—C7 −1.3 (2)
C1—C2—C3—C4 −0.8 (3) C10—C11—C12—S1 177.93 (13)
C2—C3—C4—C5 −1.0 (3) C8—C7—C12—C11 −2.0 (2)
C3—C4—C5—C6 1.7 (3) N1—C7—C12—C11 −179.24 (14)
C2—C1—C6—C5 −1.1 (2) C8—C7—C12—S1 178.73 (12)
S1—C1—C6—C5 179.43 (12) N1—C7—C12—S1 1.50 (18)
C2—C1—C6—N1 177.23 (14) O2—S1—C12—C11 26.68 (16)
S1—C1—C6—N1 −2.26 (19) O1—S1—C12—C11 −103.47 (14)
C4—C5—C6—C1 −0.6 (2) C1—S1—C12—C11 142.39 (13)
C4—C5—C6—N1 −178.90 (15) O2—S1—C12—C7 −154.06 (12)
C13—N1—C6—C1 122.59 (15) O1—S1—C12—C7 75.79 (13)
C7—N1—C6—C1 −44.68 (19) C1—S1—C12—C7 −38.35 (13)
C13—N1—C6—C5 −59.1 (2) C7—N1—C13—O3 174.72 (15)
C7—N1—C6—C5 133.59 (15) C6—N1—C13—O3 8.4 (2)
C13—N1—C7—C8 61.5 (2) C7—N1—C13—C14 −3.5 (2)
C6—N1—C7—C8 −131.99 (15) C6—N1—C13—C14 −169.76 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2B···O2i 0.95 2.50 3.246 (2) 135
C8—H8A···O1ii 0.95 2.54 3.376 (2) 147
C9—H9A···O3ii 0.95 2.56 3.322 (2) 137

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2011).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.
  4. Jasinski, J. P., Pek, A. E., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o430–o431. [DOI] [PMC free article] [PubMed]
  5. Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379–47386. [DOI] [PubMed]
  6. Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.
  7. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381–382.
  10. Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811021854/yk2011sup1.cif

e-67-o1702-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021854/yk2011Isup2.hkl

e-67-o1702-Isup2.hkl (127.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021854/yk2011Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES