Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1660–o1661. doi: 10.1107/S160053681102174X

3-(4-Methyl­phen­yl)-1-phenyl-3-(4,5,6,7-tetra­hydro-1,2,3-benzoselenadiazol-4-yl)propan-1-one

J Muthukumaran a, M Nishandhini b, S Chitra c, P Manisankar c, Suman Bhattacharya d, S Muthusubramanian e, R Krishna a,, J Jeyakanthan b,*
PMCID: PMC3151998  PMID: 21837060

Abstract

In the title compound, C22H22N2OSe, the fused six-membered ring of the 4,5,6,7-tetra­hydro­benzo[d][1,2,3] selenadiazole group adopts a near to envelope (E form) conformation and the five-membered 1,2,3-selenadiazole ring is essentially planar (r.m.s. deviation = 0.0059 Å). In the crystal, adjacent mol­ecules are inter­linked through weak inter­molecular C—H⋯π inter­actions.

Related literature

For bond lengths in compounds containing a 1,2,3-selenadiazole group, see: Arsenyan et al. (2007); Saravanan et al. (2006a ,b , 2007, 2008); Marx et al. (2007, 2008a ,b ); Gunasekaran et al. (2007a ,b ). For biological applications of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001); El-Bahaie et al. (1990); El-Kashef et al. (1986); Plano et al. (2010); Padmavathi et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For C—H⋯π inter­actions, see: Desiraju & Steiner (1999).graphic file with name e-67-o1660-scheme1.jpg

Experimental

Crystal data

  • C22H22N2OSe

  • M r = 409.38

  • Triclinic, Inline graphic

  • a = 8.1485 (9) Å

  • b = 9.7929 (9) Å

  • c = 12.1234 (13) Å

  • α = 98.707 (9)°

  • β = 96.387 (9)°

  • γ = 94.792 (9)°

  • V = 945.36 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.5 × 0.40 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.585, T max = 1.000

  • 8343 measured reflections

  • 3339 independent reflections

  • 2615 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.00

  • 3339 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681102174X/zl2374sup1.cif

e-67-o1660-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102174X/zl2374Isup2.hkl

e-67-o1660-Isup2.hkl (163.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102174X/zl2374Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JJ thanks Dr Binoy Krishna Saha, Assistant Professor, Department of Chemistry, Pondicherry University, Puducherry, for providing access to the X-ray facility. JM thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF).

supplementary crystallographic information

Comment

1,2,3-Selenadiazole and its derivatives exhibit various potential biological activities such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. Considering the importances of the 1,2,3-selenadiazole derivatives, we present herein the single-crystal structure analysis of the title compound. The bond lengths of the 1,2,3-selenadiazole moiety in the title compound are comparable to those observed for selenadiazole moieties in several crystal structures such as 4-methyl-5-ethoxycarbonyl-1,2,3-selenadiazole phenylboronic acid (Arsenyan et al., 2007), diethyl 2-((4-methylphenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl)malonate (Saravanan et al., 2006a), 4-(4-chlorophenyl)-5-(1-(4-methoxyphenyl)-2-methyl-2-nitropropyl)-1,2,3-selenadiazole (Saravanan et al., 2006b), 3-(4-methylphenyl)-3-(4-(4-methylphenyl)-1,2,3-selenadiazol-5-yl)-2-phenylpropanenitrile (Saravanan et al., 2007), ethyl (Z)-3-(4-chlorophenyl)-2-cyano-3-(4-phenyl-1,2,3-selenadiazol-5-yl)prop-2-enoate (Saravanan et al., 2008), 5-(2-methyl-2-nitro-1-phenylpropyl)-4-phenyl-1,2,3-selenadiazole (Marx et al., 2007), 4-(4-Chlorophenyl)-5-(1-(4-chlorophenyl)-2-methyl-2-nitropropyl)-1,2,3-selenadiazole (Marx et al., 2008a), diethyl 2-((4-nitrophenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl)malonate (Marx et al., 2008b), 5-[2-methyl-1-(4-methylphenyl)-2-nitropropyl]-4-phenyl-1,2,3-selenadiazole (Gunasekaran et al., 2007a) and 4-(4-chlorophenyl)-5-[2-methyl-1-(4-methylphenyl)-2-nitropropyl]-1,2,3-selenadiazole (Gunasekaran et al., 2007b). The molecular structure of the title compound is shown in Fig. 1.

The five-membered 1,2,3-selenadiazole moiety (C1/N1/N2/Se1/C2) of the title compound adopts a planar conformation as observed in the selenadiazole moieties of several crystal structures (Arsenyan et al., 2007; Saravanan et al., 2006a; Saravanan et al., 2006b; Saravanan et al., 2007; Saravanan et al., 2008; Marx et al., 2007; Marx et al., 2008a; Marx et al., 2008b; Gunasekaran et al., 2007a; Gunasekaran et al., 2007b). Cremer & Pople puckering analysis (Cremer & Pople, 1975) cannot be performed, for its weighted average absolute torsion angle is 0.89°, which is less than 5.0°. However, the fused six-membered ring (C1/C2/C3/C4/C5/C6) of the 4,5,6,7-tetrahydrobenzo[d][1,2,3] selenadiazole group adopts a near envelope (E form) conformation with puckering parameters of Q = 0.485 (3) Å, θ = 47.7 (4)° and Φ = 217.1 (5)°.

The molecular structure is stabilized by an intramolecular C7—H7···N1 interaction (Fig. 2) [C7-N1 distance: 2.96 Å, H7-N1 distance: 2.57 Å and C7-H7···N1 angle 104 °]. The C—H···π interaction (Fig. 2) is observed between C4—H4A···Cg (Cg is the centroid of the C17—C22 six-membered ring, C···Cg distance: 3.549 (3) Å, H-Perp: -2.61 Å), which contributes to the stabilization of crystal packing (Fig. 3, symmetry code for the centroid: 1-x,-y,-z). The bond distance of C—H···π interaction agrees with those described by Desiraju & Steiner (1999).

Experimental

A mixture of 2-[1-(4-methylphenyl)-3-oxo-3-phenylpropyl]-1-cyclohexanone (1 mmol, 0.32 g) and semicarbazide hydrochloride (1 mmol, 0.11 g) in ethanol (10 ml) was refluxed for 3 h. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water (50 ml) and the resulting mono-semicarbazone solid was filtered off. Then, a mixture of mono-semicarbazone (1 mmol, 0.38 g) and SeO2 (2 mmol, 0.44 g) in tetrahydrofuran (THF) (10 ml) were refluxed on a water bath for 30 minutes. After completion of the reaction as monitored by TLC, the reaction mixture was filtered to remove selenium powder, the filtrate was concentrated under vacuum, and the residue was subjected to column chromatography using a petroleum ether/ethylacetate mixture (95:5; v/v) as eluent to afford the pure product (Yield: 69%, melting point: 398-399 K). Dissolving the pure compound in a 3:1 mixture of dichloromethane:ethylacetate and slow evaporation of the solvents provided crystals suitable for X-ray analysis. Spectroscopic data for the title compound: IR (KBr): 2940 (C-H), 1679 (C=O), 1585 (N=N), 1351 (C-N)cm-1 .

Refinement

The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The C—H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular interaction showing the weak intermolecular C—H···π and intramolecular C-H···N interactions in title compound (Cg is the centroid of C17—C22 ring. Symmetry code for the centroid: 1-x,-y,-z).

Fig. 3.

Fig. 3.

Packing diagram of the title compound.

Crystal data

C22H22N2OSe Z = 2
Mr = 409.38 F(000) = 420
Triclinic, P1 Dx = 1.438 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1485 (9) Å Cell parameters from 4672 reflections
b = 9.7929 (9) Å θ = 2.9–29.2°
c = 12.1234 (13) Å µ = 2.00 mm1
α = 98.707 (9)° T = 293 K
β = 96.387 (9)° Block, blue
γ = 94.792 (9)° 0.5 × 0.40 × 0.25 mm
V = 945.36 (17) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 3339 independent reflections
Radiation source: fine-focus sealed tube 2615 reflections with I > 2σ(I)
graphite Rint = 0.055
Detector resolution: 15.9821 pixels mm-1 θmax = 25.0°, θmin = 2.9°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −11→11
Tmin = 0.585, Tmax = 1.000 l = −14→14
8343 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
3339 reflections (Δ/σ)max = 0.034
236 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 −0.19156 (4) 0.31704 (3) −0.12511 (3) 0.05512 (16)
O1 0.3386 (3) 0.0336 (3) 0.32048 (18) 0.0610 (6)
N1 −0.0624 (3) 0.1746 (2) 0.0229 (2) 0.0448 (6)
N2 −0.2056 (3) 0.1974 (3) −0.0175 (2) 0.0550 (7)
C1 0.0719 (3) 0.2396 (3) −0.0161 (2) 0.0343 (6)
C2 0.0346 (3) 0.3218 (3) −0.0942 (2) 0.0368 (6)
C3 0.1612 (4) 0.3990 (3) −0.1498 (2) 0.0459 (7)
H3A 0.1697 0.4973 −0.1199 0.055*
H3B 0.1258 0.3873 −0.2300 0.055*
C4 0.3299 (3) 0.3453 (3) −0.1294 (2) 0.0423 (7)
H4A 0.3314 0.2586 −0.1798 0.051*
H4B 0.4150 0.4117 −0.1461 0.051*
C5 0.3690 (3) 0.3219 (3) −0.0084 (2) 0.0388 (6)
H5A 0.3656 0.4083 0.0420 0.047*
H5B 0.4804 0.2942 0.0028 0.047*
C6 0.2456 (3) 0.2097 (3) 0.0210 (2) 0.0326 (6)
H6 0.2626 0.1227 −0.0261 0.039*
C7 0.2761 (3) 0.1843 (3) 0.1445 (2) 0.0327 (6)
H7 0.1838 0.1185 0.1549 0.039*
C8 0.2757 (3) 0.3124 (3) 0.2321 (2) 0.0336 (6)
C9 0.1304 (4) 0.3465 (3) 0.2740 (2) 0.0442 (7)
H9 0.0321 0.2901 0.2473 0.053*
C10 0.1276 (4) 0.4621 (3) 0.3547 (2) 0.0503 (8)
H10 0.0278 0.4816 0.3810 0.060*
C11 0.2703 (4) 0.5492 (3) 0.3970 (2) 0.0501 (8)
C12 0.4156 (4) 0.5161 (3) 0.3552 (2) 0.0508 (8)
H12 0.5137 0.5727 0.3820 0.061*
C13 0.4181 (3) 0.4012 (3) 0.2750 (2) 0.0415 (7)
H13 0.5180 0.3823 0.2486 0.050*
C14 0.2685 (5) 0.6764 (4) 0.4855 (3) 0.0784 (12)
H14A 0.2668 0.7577 0.4500 0.118*
H14B 0.3660 0.6855 0.5393 0.118*
H14C 0.1714 0.6665 0.5229 0.118*
C15 0.4339 (3) 0.1113 (3) 0.1603 (2) 0.0381 (6)
H15A 0.4323 0.0374 0.0970 0.046*
H15B 0.5293 0.1774 0.1599 0.046*
C16 0.4547 (3) 0.0505 (3) 0.2673 (2) 0.0362 (6)
C17 0.6188 (3) 0.0024 (2) 0.3039 (2) 0.0328 (6)
C18 0.7605 (3) 0.0330 (3) 0.2545 (2) 0.0419 (7)
H18 0.7562 0.0860 0.1969 0.050*
C19 0.9086 (4) −0.0160 (3) 0.2917 (3) 0.0579 (8)
H19 1.0040 0.0053 0.2594 0.069*
C20 0.9149 (4) −0.0951 (3) 0.3752 (3) 0.0603 (9)
H20 1.0144 −0.1281 0.3990 0.072*
C21 0.7756 (4) −0.1266 (3) 0.4247 (3) 0.0575 (9)
H21 0.7810 −0.1804 0.4817 0.069*
C22 0.6269 (4) −0.0777 (3) 0.3890 (2) 0.0459 (7)
H22 0.5325 −0.0987 0.4223 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.0423 (2) 0.0661 (3) 0.0560 (2) 0.01699 (17) −0.00317 (16) 0.00744 (17)
O1 0.0453 (13) 0.0959 (17) 0.0575 (14) 0.0249 (12) 0.0249 (11) 0.0392 (13)
N1 0.0341 (14) 0.0493 (15) 0.0504 (15) 0.0004 (11) 0.0051 (11) 0.0081 (12)
N2 0.0353 (15) 0.0650 (17) 0.0626 (17) 0.0015 (13) 0.0057 (12) 0.0061 (13)
C1 0.0360 (15) 0.0315 (14) 0.0331 (14) 0.0009 (12) 0.0043 (11) −0.0008 (11)
C2 0.0379 (16) 0.0372 (15) 0.0332 (14) 0.0080 (12) 0.0015 (12) −0.0011 (11)
C3 0.0564 (19) 0.0429 (16) 0.0401 (16) 0.0054 (14) 0.0033 (14) 0.0139 (13)
C4 0.0456 (18) 0.0457 (16) 0.0360 (15) −0.0015 (13) 0.0094 (13) 0.0085 (13)
C5 0.0340 (15) 0.0472 (16) 0.0372 (15) 0.0014 (13) 0.0066 (12) 0.0123 (12)
C6 0.0319 (14) 0.0349 (14) 0.0311 (14) 0.0036 (11) 0.0060 (11) 0.0036 (11)
C7 0.0284 (14) 0.0356 (14) 0.0358 (14) 0.0026 (11) 0.0069 (11) 0.0093 (11)
C8 0.0378 (16) 0.0369 (15) 0.0291 (13) 0.0077 (12) 0.0063 (11) 0.0109 (11)
C9 0.0369 (16) 0.0501 (17) 0.0451 (17) 0.0063 (13) 0.0056 (13) 0.0049 (13)
C10 0.054 (2) 0.0575 (19) 0.0429 (17) 0.0220 (17) 0.0139 (15) 0.0045 (14)
C11 0.075 (2) 0.0421 (17) 0.0343 (16) 0.0160 (17) 0.0026 (15) 0.0064 (13)
C12 0.059 (2) 0.0469 (18) 0.0418 (17) −0.0043 (15) −0.0039 (15) 0.0045 (14)
C13 0.0398 (17) 0.0460 (16) 0.0385 (15) 0.0034 (13) 0.0058 (12) 0.0057 (13)
C14 0.110 (3) 0.058 (2) 0.063 (2) 0.023 (2) 0.005 (2) −0.0098 (18)
C15 0.0382 (16) 0.0398 (15) 0.0397 (15) 0.0099 (13) 0.0106 (12) 0.0094 (12)
C16 0.0387 (16) 0.0383 (15) 0.0329 (14) 0.0055 (12) 0.0092 (12) 0.0054 (11)
C17 0.0357 (15) 0.0295 (13) 0.0316 (14) 0.0050 (11) 0.0031 (11) −0.0003 (11)
C18 0.0355 (16) 0.0407 (16) 0.0492 (17) 0.0031 (13) 0.0058 (13) 0.0070 (13)
C19 0.0358 (18) 0.063 (2) 0.073 (2) 0.0031 (15) 0.0055 (15) 0.0082 (18)
C20 0.049 (2) 0.066 (2) 0.061 (2) 0.0204 (17) −0.0099 (17) 0.0025 (17)
C21 0.072 (2) 0.063 (2) 0.0398 (17) 0.0220 (18) −0.0018 (16) 0.0138 (15)
C22 0.0521 (18) 0.0523 (18) 0.0353 (15) 0.0132 (14) 0.0070 (13) 0.0079 (13)

Geometric parameters (Å, °)

N1—N2 1.266 (3) C12—C11 1.383 (4)
N1—C1 1.384 (3) C12—H12 0.9300
Se1—C2 1.834 (3) C13—C12 1.375 (4)
Se1—N2 1.887 (3) C13—C8 1.391 (4)
C1—C2 1.358 (4) C13—H13 0.9300
C3—C2 1.506 (4) C14—H14A 0.9600
C3—H3A 0.9700 C14—H14B 0.9600
C3—H3B 0.9700 C14—H14C 0.9600
C4—C5 1.521 (3) C15—C16 1.506 (3)
C4—C3 1.521 (4) C15—C7 1.531 (3)
C4—H4A 0.9700 C15—H15A 0.9700
C4—H4B 0.9700 C15—H15B 0.9700
C5—H5A 0.9700 O1—C16 1.216 (3)
C5—H5B 0.9700 C17—C22 1.386 (3)
C6—C1 1.502 (3) C17—C18 1.390 (4)
C6—C5 1.535 (3) C17—C16 1.498 (3)
C6—C7 1.552 (3) C18—C19 1.390 (4)
C6—H6 0.9800 C18—H18 0.9300
C7—C8 1.517 (3) C19—C20 1.364 (4)
C7—H7 0.9800 C19—H19 0.9300
C9—C8 1.386 (4) C20—H20 0.9300
C9—C10 1.382 (4) C21—C20 1.375 (5)
C9—H9 0.9300 C21—H21 0.9300
C10—C11 1.382 (4) C22—C21 1.389 (4)
C10—H10 0.9300 C22—H22 0.9300
C11—C14 1.518 (4)
N1—N2—Se1 110.78 (19) C10—C9—H9 119.1
N1—C1—C6 120.6 (2) C10—C11—C14 121.7 (3)
N2—N1—C1 117.2 (2) C11—C14—H14A 109.5
C1—C6—C5 109.0 (2) C11—C14—H14B 109.5
C1—C6—C7 114.5 (2) C11—C10—C9 121.4 (3)
C1—C6—H6 106.1 C11—C10—H10 119.3
C1—C2—C3 124.5 (2) C11—C12—H12 119.3
C1—C2—Se1 109.5 (2) C11—C14—H14C 109.5
C2—Se1—N2 86.70 (11) C12—C11—C10 117.2 (3)
C2—C1—N1 115.8 (2) C12—C11—C14 121.0 (3)
C2—C1—C6 123.5 (2) C12—C13—C8 122.0 (3)
C2—C3—C4 110.6 (2) C12—C13—H13 119.0
C2—C3—H3A 109.5 C13—C8—C7 122.8 (2)
C2—C3—H3B 109.5 C13—C12—C11 121.3 (3)
C3—C4—H4A 109.3 C13—C12—H12 119.3
C3—C4—H4B 109.3 H14A—C14—H14B 109.5
C3—C2—Se1 125.89 (19) H14A—C14—H14C 109.5
H3A—C3—H3B 108.1 H14B—C14—H14C 109.5
C4—C5—C6 111.9 (2) C15—C7—C6 109.07 (19)
C4—C5—H5A 109.2 C15—C7—H7 106.6
C4—C5—H5B 109.2 H15A—C15—H15B 107.7
H4A—C4—H4B 107.9 C16—C15—C7 113.9 (2)
C4—C3—H3A 109.5 C16—C15—H15A 108.8
C4—C3—H3B 109.5 C16—C15—H15B 108.8
C5—C6—C7 114.3 (2) O1—C16—C17 120.1 (2)
C5—C6—H6 106.1 O1—C16—C15 121.0 (2)
C5—C4—C3 111.7 (2) C17—C18—H18 120.2
C5—C4—H4A 109.3 C17—C22—H22 119.9
C5—C4—H4B 109.3 C17—C16—C15 118.8 (2)
H5A—C5—H5B 107.9 C18—C17—C16 122.5 (2)
C6—C7—H7 106.6 C18—C19—H19 119.8
C6—C5—H5A 109.2 C19—C18—C17 119.6 (3)
C6—C5—H5B 109.2 C19—C18—H18 120.2
C7—C6—H6 106.1 C19—C20—C21 120.7 (3)
C7—C15—H15A 108.8 C19—C20—H20 119.6
C7—C15—H15B 108.8 C20—C21—C22 119.6 (3)
C8—C9—C10 121.7 (3) C20—C21—H21 120.2
C8—C9—H9 119.1 C20—C19—C18 120.3 (3)
C8—C13—H13 119.0 C20—C19—H19 119.8
C8—C7—C15 113.0 (2) C21—C22—C17 120.2 (3)
C8—C7—C6 114.5 (2) C21—C22—H22 119.9
C8—C7—H7 106.6 C21—C20—H20 119.6
C9—C10—H10 119.3 C22—C17—C18 119.5 (2)
C9—C8—C13 116.4 (3) C22—C17—C16 118.0 (2)
C9—C8—C7 120.8 (2) C22—C21—H21 120.2
N1—C1—C2—C3 −178.4 (2) C7—C15—C16—C17 −167.7 (2)
N1—C1—C2—Se1 −0.9 (3) C8—C13—C12—C11 −0.3 (4)
N2—N1—C1—C2 0.1 (4) C8—C9—C10—C11 0.1 (4)
N2—N1—C1—C6 −175.4 (2) C9—C10—C11—C12 0.1 (4)
N2—Se1—C2—C1 1.03 (19) C9—C10—C11—C14 180.0 (3)
N2—Se1—C2—C3 178.5 (2) C10—C9—C8—C13 −0.4 (4)
C1—N1—N2—Se1 0.7 (3) C10—C9—C8—C7 179.4 (2)
C1—C6—C5—C4 −48.7 (3) C12—C13—C8—C9 0.5 (4)
C1—C6—C7—C8 −70.1 (3) C12—C13—C8—C7 −179.3 (2)
C1—C6—C7—C15 162.1 (2) C13—C12—C11—C10 0.0 (4)
C2—Se1—N2—N1 −1.0 (2) C13—C12—C11—C14 −179.9 (3)
C3—C4—C5—C6 63.0 (3) C15—C7—C8—C9 −143.5 (2)
C4—C3—C2—C1 14.1 (4) C15—C7—C8—C13 36.2 (3)
C4—C3—C2—Se1 −162.95 (19) C16—C17—C18—C19 −179.4 (3)
C5—C6—C1—C2 20.0 (3) C16—C17—C22—C21 179.0 (3)
C5—C6—C1—N1 −164.9 (2) C16—C15—C7—C8 65.3 (3)
C5—C6—C7—C8 56.6 (3) C16—C15—C7—C6 −166.1 (2)
C5—C6—C7—C15 −71.1 (3) C17—C22—C21—C20 0.1 (4)
C5—C4—C3—C2 −42.7 (3) C17—C18—C19—C20 0.8 (5)
C6—C1—C2—C3 −3.1 (4) C18—C19—C20—C21 −0.6 (5)
C6—C1—C2—Se1 174.40 (19) C18—C17—C16—O1 −172.4 (3)
C6—C7—C8—C9 90.8 (3) C18—C17—C22—C21 0.1 (4)
C6—C7—C8—C13 −89.5 (3) C18—C17—C16—C15 11.4 (4)
C7—C6—C5—C4 −178.3 (2) C22—C17—C18—C19 −0.6 (4)
C7—C6—C1—C2 149.4 (2) C22—C17—C16—O1 8.8 (4)
C7—C6—C1—N1 −35.5 (3) C22—C17—C16—C15 −167.4 (2)
C7—C15—C16—O1 16.1 (4) C22—C21—C20—C19 0.2 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2374).

References

  1. Arsenyan, P., Oberte, K. & Belyakov, S. (2007). Chem. Heterocycl. Compd, 43, 233–237.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  4. El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793. [PubMed]
  5. El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gunasekaran, B., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Nethaji, M. (2007b). Acta Cryst. E63, o4024.
  8. Gunasekaran, B., Saravanan, S., Manivannan, V., Muthusubramanian, S. & Nethaji, M. (2007a). Acta Cryst. E63, o4167.
  9. Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.
  10. Marx, A., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Sridhar, B. (2007). Acta Cryst. E63, o4676.
  11. Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008a). Acta Cryst. E64, o349. [DOI] [PMC free article] [PubMed]
  12. Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008b). Acta Cryst. E64, o729. [DOI] [PMC free article] [PubMed]
  13. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  14. Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.
  15. Plano, D., Moreno, E., Font, M., Encıo, I., Palop, J. A. & Sanmartın, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691. [DOI] [PubMed]
  16. Saravanan, S., Athimoolam, S. & Muthusubramanian, S. (2007). ARKIVOC, 8, 22–33.
  17. Saravanan, S., Azath, I. A. & Muthusubramanian, S. (2008). J. Org. Chem, 73, 2323–2329. [DOI] [PubMed]
  18. Saravanan, S., Muthusubramanian, S. & Polborn, K. (2006a). Indian J. Chem. Sect. B, 45, 758–761.
  19. Saravanan, S., Nithya, A. & Muthusubramanian, S. (2006b). J. Heterocycl. Chem. 43, 149–151.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681102174X/zl2374sup1.cif

e-67-o1660-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102174X/zl2374Isup2.hkl

e-67-o1660-Isup2.hkl (163.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102174X/zl2374Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES