Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 30;67(Pt 7):o1862. doi: 10.1107/S1600536811025086

4-tert-Butyl-3′,4′-bis­(4-methyl­phen­yl)-3,4-dihydro-1H,4′H-spiro­[naphthalene-2,5′-[1,2]oxazol]-1-one

Mohamed Akhazzane a,*, Hafid Zouihri b, AKella Bennani a, Abdelali Kerbal a, Ghali Al Houari a
PMCID: PMC3152001  PMID: 21837226

Abstract

In the title compound, C30H31NO2, the cyclo­hexa­none ring in the naphthalene fused-ring system adopts a half-chair conformation, presumably due to conjugation of the benzene ring. The naphthalene ring system makes dihedral angles of 86.63 (7), 65.15 (8) and 63.18 (8)° with respect to the two methyl­benzene planes and the 1,2-oxazole ring system. Inter­molecular C—H⋯O and C—H⋯N hydrogen bonding and C—H⋯π inter­actions stabilize the crystal structure. The H atoms of the two methyl groups of the methyl­phenyl groups are disordered over two positions with equal occupancies.

Related literature

For general background to dipolar-1,3 cyclo­addition reactions, see: Al Houari et al. (2008, 2010). For a related structure, see: Akhazzane et al. (2010). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o1862-scheme1.jpg

Experimental

Crystal data

  • C30H31NO2

  • M r = 437.56

  • Monoclinic, Inline graphic

  • a = 6.9158 (2) Å

  • b = 25.0737 (5) Å

  • c = 13.8747 (3) Å

  • β = 94.359 (1)°

  • V = 2398.98 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.14 mm

Data collection

  • Bruker APEXII CCD detector diffractometer

  • 25446 measured reflections

  • 4473 independent reflections

  • 3577 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.111

  • S = 1.06

  • 4473 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025086/fj2437sup1.cif

e-67-o1862-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025086/fj2437Isup2.hkl

e-67-o1862-Isup2.hkl (219.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025086/fj2437Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O1i 0.93 2.54 3.4254 (17) 160
C29—H29F⋯N1ii 0.96 2.62 3.546 (2) 161
C26—H26ACg2i 0.96 2.77 3.6643 (16) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

In this paper we studied the regiochemistry and stereochemistry in the reaction of the p-tolylnitriloxide with the 4-tert-butyl-2-(4-methylbenzylidene)-3,4-dihydronaphthalen-1-one.The X-ray crystal structure study shows that the carbonyl group is in position 5 of the isoxazoline. We also found out with this study, that the disposition of the ethyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects [Al Houari, et al. (2010) and Al Houari et al. (2008)].

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure [Akhazzane et al., (2010)].

The cyclohexanone ring in the dihydronaphthalene fused-ring system adopts a half-chair conformation, presumably due to conjugation of the planar annulated benzo ring,, with the puckering parameters of: Q(2) = 0.5212 (14) Å, Phi(2) = 130.12 (15)°, Q(3) = 0.0845 (14) Å (Cremer & Pople, 1975). The dihedral angles between rings are 4'-methylbenzene (E) /naphthalene = 86.63 (7)°, 3'-methylbenzene (D) /naphthalene = 65.15 (8)°, oxazol (C) /naphthalene = 63.18 (8)°, 4'-methylbenzene (E) /3'-methylbenzene (D) = 75.77 (9)°, 3'-methylbenzene (D) /oxazol (C) = 14.55 (9)° and 4'-methylbenzene (E) /oxazol (C) = 89.68 (9)°.

The crystal packing of the title compound is illustrated in Fig. 2. Intermolecular C—H···O and C—H···N hydrogen bonding and C—H···π interactions stabilize the crystal structure.

Experimental

In a100 ml flask, we dissolve 2 mmoles of the 4-tert-butyl-2-(4-methylbenzylidene)-3,4-dihydronaphthalen-1-one and 2.4 mmoles of p-tolyloxime in 20 ml of chloroform. The mixture is cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl) at 18°Chl (chlorometric degree) is added in small doses without exceeding the temperature of 5°C. The mixture is left under magnetic stirring for 16 h at room temperature, then washed with water until pH is neutral and dried on sodium sulfate. The solvent is evaporated with a rotating evaporator and the oily residue is dissolved in ethanol. The precipitated cycloadduct is then recrystallized in ethanol.

Refinement

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups and 0.97 Å for CH2 groups with Uiso(H) = 1.2 Ueq(C), and 0.96 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C).

The H atoms of the two methyls of the methylbenzene systems are disordered over two positions with 0.5 equal occupancies.

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the chain formed by C—H···O and C—H···N hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C30H31NO2 F(000) = 936
Mr = 437.56 Dx = 1.211 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 214 reflections
a = 6.9158 (2) Å θ = 2.5–25.7°
b = 25.0737 (5) Å µ = 0.08 mm1
c = 13.8747 (3) Å T = 296 K
β = 94.359 (1)° Prism, colourless
V = 2398.98 (10) Å3 0.23 × 0.21 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD detector diffractometer 3577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
graphite θmax = 25.5°, θmin = 2.2°
ω and φ scans h = −8→8
25446 measured reflections k = −30→28
4473 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.3646P] where P = (Fo2 + 2Fc2)/3
4473 reflections (Δ/σ)max = 0.001
301 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.99029 (18) 0.74156 (5) 0.65946 (9) 0.0436 (3)
C10 0.91627 (18) 0.68621 (5) 0.65774 (9) 0.0426 (3)
C11 0.79579 (18) 0.60703 (5) 0.75229 (9) 0.0414 (3)
C12 0.92787 (19) 0.56724 (5) 0.70820 (9) 0.0443 (3)
C13 0.8637 (2) 0.51687 (5) 0.66211 (10) 0.0470 (3)
C14 0.6692 (2) 0.50386 (6) 0.64952 (12) 0.0617 (4)
C15 0.6080 (3) 0.45881 (7) 0.59815 (13) 0.0678 (5)
C16 0.7374 (3) 0.42578 (6) 0.55695 (11) 0.0598 (4)
C17 0.9322 (3) 0.43787 (6) 0.57194 (12) 0.0624 (4)
C18 0.9957 (2) 0.48232 (6) 0.62346 (11) 0.0571 (4)
C19 0.73938 (19) 0.58832 (5) 0.85013 (10) 0.0434 (3)
C2 1.0839 (2) 0.76120 (6) 0.58097 (10) 0.0559 (4)
C20 0.8776 (2) 0.56859 (6) 0.91866 (11) 0.0536 (4)
C21 0.8290 (3) 0.55555 (6) 1.01065 (12) 0.0631 (4)
C22 0.6423 (3) 0.56116 (6) 1.03785 (12) 0.0619 (4)
C23 0.5045 (3) 0.57951 (6) 0.96882 (13) 0.0645 (4)
C24 0.5510 (2) 0.59308 (6) 0.87645 (12) 0.0538 (4)
C25 0.6435 (2) 0.76273 (6) 0.81758 (11) 0.0516 (4)
C26 0.5354 (2) 0.73359 (7) 0.73308 (13) 0.0650 (4)
C27 0.5627 (3) 0.74534 (8) 0.91206 (14) 0.0735 (5)
C28 0.6084 (2) 0.82265 (6) 0.80518 (14) 0.0706 (5)
C29 0.6694 (3) 0.37877 (7) 0.49570 (14) 0.0845 (6)
C3 1.1560 (3) 0.81225 (7) 0.58255 (12) 0.0670 (5)
C30 0.5917 (4) 0.54724 (8) 1.13904 (14) 0.0944 (7)
C4 1.1346 (2) 0.84417 (6) 0.66174 (12) 0.0654 (4)
C5 1.0423 (2) 0.82538 (6) 0.73955 (11) 0.0552 (4)
C6 0.96796 (18) 0.77373 (5) 0.74004 (9) 0.0439 (3)
C7 0.86674 (19) 0.75211 (5) 0.82404 (9) 0.0440 (3)
C8 0.9315 (2) 0.69419 (5) 0.84267 (9) 0.0463 (3)
C9 0.92760 (18) 0.65669 (5) 0.75533 (9) 0.0413 (3)
H11 0.6796 0.6131 0.7088 0.050*
H14 0.5781 0.5257 0.6759 0.074*
H15 0.4765 0.4507 0.5914 0.081*
H17 1.0227 0.4155 0.5466 0.075*
H18 1.1278 0.4894 0.6325 0.069*
H2 1.0974 0.7396 0.5274 0.067*
H20 1.0046 0.5641 0.9025 0.064*
H21 0.9247 0.5427 1.0553 0.076*
H23 0.3768 0.5829 0.9846 0.077*
H24 0.4546 0.6055 0.8317 0.065*
H26A 0.3999 0.7423 0.7311 0.098*
H26B 0.5518 0.6958 0.7414 0.098*
H26C 0.5865 0.7444 0.6737 0.098*
H27A 0.6311 0.7635 0.9652 0.110*
H27B 0.5789 0.7075 0.9200 0.110*
H27C 0.4274 0.7541 0.9104 0.110*
H28A 0.6484 0.8338 0.7436 0.106*
H28B 0.6820 0.8416 0.8557 0.106*
H28C 0.4730 0.8301 0.8085 0.106*
H29A 0.7795 0.3605 0.4734 0.127* 0.50
H29B 0.5876 0.3910 0.4412 0.127* 0.50
H29C 0.5977 0.3548 0.5335 0.127* 0.50
H29D 0.5303 0.3771 0.4920 0.127* 0.50
H29E 0.7223 0.3465 0.5242 0.127* 0.50
H29F 0.7122 0.3828 0.4319 0.127* 0.50
H3 1.2189 0.8252 0.5304 0.080*
H30A 0.4561 0.5536 1.1447 0.142* 0.50
H30B 0.6667 0.5690 1.1850 0.142* 0.50
H30C 0.6201 0.5103 1.1517 0.142* 0.50
H30D 0.7058 0.5350 1.1762 0.142* 0.50
H30E 0.4952 0.5196 1.1359 0.142* 0.50
H30F 0.5418 0.5783 1.1692 0.142* 0.50
H4 1.1829 0.8788 0.6628 0.078*
H5 1.0295 0.8475 0.7925 0.066*
H7 0.9198 0.7722 0.8805 0.053*
H8A 1.0628 0.6948 0.8726 0.056*
H8B 0.8496 0.6789 0.8892 0.056*
N1 1.10645 (17) 0.58119 (5) 0.71418 (9) 0.0514 (3)
O1 1.12294 (13) 0.63264 (4) 0.75739 (7) 0.0499 (2)
O2 0.86056 (16) 0.66355 (4) 0.58328 (7) 0.0569 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0448 (7) 0.0429 (7) 0.0412 (7) −0.0023 (6) −0.0079 (5) 0.0048 (6)
C10 0.0445 (7) 0.0415 (7) 0.0409 (7) 0.0014 (5) −0.0029 (5) −0.0014 (6)
C11 0.0422 (7) 0.0366 (7) 0.0445 (7) 0.0035 (5) −0.0023 (5) 0.0010 (5)
C12 0.0498 (8) 0.0392 (7) 0.0440 (7) 0.0043 (6) 0.0044 (6) 0.0039 (6)
C13 0.0606 (8) 0.0366 (7) 0.0446 (7) 0.0026 (6) 0.0088 (6) 0.0048 (6)
C14 0.0647 (10) 0.0493 (9) 0.0736 (10) −0.0051 (7) 0.0216 (8) −0.0118 (8)
C15 0.0722 (10) 0.0571 (10) 0.0766 (11) −0.0160 (8) 0.0223 (9) −0.0129 (8)
C16 0.0908 (12) 0.0401 (8) 0.0512 (8) −0.0094 (8) 0.0237 (8) 0.0015 (7)
C17 0.0853 (12) 0.0412 (9) 0.0632 (10) 0.0099 (8) 0.0217 (8) −0.0014 (7)
C18 0.0638 (9) 0.0456 (9) 0.0625 (9) 0.0088 (7) 0.0089 (7) 0.0012 (7)
C19 0.0464 (7) 0.0337 (7) 0.0503 (7) 0.0020 (5) 0.0039 (6) −0.0003 (6)
C2 0.0660 (9) 0.0596 (10) 0.0406 (7) −0.0096 (7) −0.0053 (6) 0.0056 (6)
C20 0.0540 (8) 0.0505 (9) 0.0563 (9) 0.0076 (6) 0.0050 (7) 0.0095 (7)
C21 0.0843 (11) 0.0491 (9) 0.0550 (9) 0.0057 (8) −0.0013 (8) 0.0083 (7)
C22 0.0949 (12) 0.0360 (8) 0.0576 (9) −0.0022 (8) 0.0232 (9) −0.0027 (7)
C23 0.0694 (10) 0.0493 (9) 0.0787 (11) −0.0011 (7) 0.0312 (9) −0.0031 (8)
C24 0.0487 (8) 0.0451 (8) 0.0678 (10) 0.0022 (6) 0.0064 (7) 0.0001 (7)
C25 0.0489 (8) 0.0453 (8) 0.0607 (9) 0.0037 (6) 0.0048 (6) −0.0041 (7)
C26 0.0449 (8) 0.0682 (11) 0.0803 (11) 0.0065 (7) −0.0069 (7) −0.0111 (9)
C27 0.0732 (11) 0.0704 (12) 0.0799 (12) 0.0003 (9) 0.0245 (9) −0.0038 (9)
C28 0.0612 (9) 0.0518 (10) 0.0990 (13) 0.0134 (7) 0.0066 (9) −0.0023 (9)
C29 0.1239 (17) 0.0581 (11) 0.0761 (12) −0.0256 (11) 0.0377 (11) −0.0179 (9)
C3 0.0802 (11) 0.0661 (11) 0.0533 (9) −0.0224 (9) −0.0051 (8) 0.0146 (8)
C30 0.161 (2) 0.0620 (12) 0.0659 (11) −0.0026 (12) 0.0459 (13) −0.0033 (9)
C4 0.0730 (10) 0.0488 (9) 0.0720 (11) −0.0180 (8) −0.0103 (8) 0.0118 (8)
C5 0.0579 (8) 0.0439 (8) 0.0620 (9) −0.0050 (6) −0.0070 (7) −0.0035 (7)
C6 0.0409 (7) 0.0402 (7) 0.0488 (7) 0.0004 (5) −0.0084 (6) 0.0016 (6)
C7 0.0492 (7) 0.0398 (7) 0.0419 (7) −0.0003 (6) −0.0045 (6) −0.0047 (6)
C8 0.0527 (7) 0.0443 (8) 0.0402 (7) 0.0017 (6) −0.0070 (6) 0.0004 (6)
C9 0.0415 (7) 0.0379 (7) 0.0432 (7) 0.0042 (5) −0.0044 (5) 0.0020 (5)
N1 0.0517 (7) 0.0434 (7) 0.0590 (7) 0.0060 (5) 0.0046 (5) −0.0015 (5)
O1 0.0421 (5) 0.0447 (6) 0.0620 (6) 0.0031 (4) −0.0028 (4) −0.0024 (4)
O2 0.0773 (7) 0.0498 (6) 0.0420 (5) −0.0073 (5) −0.0060 (5) −0.0044 (4)

Geometric parameters (Å, °)

C1—C10 1.4788 (18) C26—H26A 0.9600
C1—C2 1.398 (2) C27—H27C 0.9600
C1—C6 1.3969 (19) C27—H27B 0.9600
C10—C9 1.5399 (18) C27—H27A 0.9600
C11—H11 0.9800 C28—H28C 0.9600
C11—C19 1.5150 (18) C28—H28B 0.9600
C11—C12 1.5129 (18) C28—H28A 0.9600
C13—C12 1.4689 (19) C29—H29F 0.9600
C13—C18 1.395 (2) C29—H29E 0.9600
C13—C14 1.383 (2) C29—H29D 0.9600
C14—H14 0.9300 C29—H29C 0.9600
C14—C15 1.385 (2) C29—H29B 0.9600
C15—H15 0.9300 C29—H29A 0.9600
C16—C29 1.507 (2) C3—H3 0.9300
C16—C17 1.381 (2) C3—C4 1.377 (2)
C16—C15 1.375 (2) C30—H30F 0.9600
C17—H17 0.9300 C30—H30E 0.9600
C18—H18 0.9300 C30—H30D 0.9600
C18—C17 1.378 (2) C30—H30C 0.9600
C19—C20 1.3871 (19) C30—H30B 0.9600
C19—C24 1.3845 (19) C30—H30A 0.9600
C2—H2 0.9300 C4—H4 0.9300
C2—C3 1.373 (2) C5—H5 0.9300
C20—H20 0.9300 C5—C4 1.378 (2)
C20—C21 1.383 (2) C6—C5 1.394 (2)
C21—H21 0.9300 C7—H7 0.9800
C22—C30 1.513 (2) C7—C25 1.5625 (19)
C22—C21 1.380 (3) C7—C8 1.5357 (18)
C22—C23 1.378 (3) C7—C6 1.5055 (19)
C23—H23 0.9300 C8—H8B 0.9700
C24—H24 0.9300 C8—H8A 0.9700
C24—C23 1.387 (2) C9—C11 1.5420 (18)
C25—C28 1.530 (2) C9—C8 1.5324 (18)
C25—C26 1.528 (2) N1—O1 1.4236 (15)
C25—C27 1.527 (2) N1—C12 1.2802 (18)
C26—H26C 0.9600 O1—C9 1.4777 (15)
C26—H26B 0.9600 O2—C10 1.2156 (15)
C2—C1—C10 119.88 (12) C25—C28—H28B 109.5
C6—C1—C10 119.72 (12) C25—C28—H28A 109.5
C6—C1—C2 120.39 (13) H29E—C29—H29F 109.5
C1—C10—C9 116.26 (11) H29D—C29—H29F 109.5
O2—C10—C9 120.96 (12) H29C—C29—H29F 141.1
O2—C10—C1 122.63 (12) H29B—C29—H29F 56.3
C9—C11—H11 110.2 H29A—C29—H29F 56.3
C19—C11—H11 110.2 C16—C29—H29F 109.5
C12—C11—H11 110.2 H29D—C29—H29E 109.5
C19—C11—C9 114.68 (10) H29C—C29—H29E 56.3
C12—C11—C9 99.77 (10) H29B—C29—H29E 141.1
C12—C11—C19 111.26 (10) H29A—C29—H29E 56.3
C13—C12—C11 124.84 (12) C16—C29—H29E 109.5
N1—C12—C11 113.75 (12) H29C—C29—H29D 56.3
N1—C12—C13 121.40 (12) H29B—C29—H29D 56.3
C18—C13—C12 121.11 (13) H29A—C29—H29D 141.1
C14—C13—C12 121.10 (13) C16—C29—H29D 109.5
C14—C13—C18 117.64 (14) H29B—C29—H29C 109.5
C15—C14—H14 119.6 H29A—C29—H29C 109.5
C13—C14—H14 119.6 C16—C29—H29C 109.5
C13—C14—C15 120.90 (15) H29A—C29—H29B 109.5
C14—C15—H15 119.2 C16—C29—H29B 109.5
C16—C15—H15 119.2 C16—C29—H29A 109.5
C16—C15—C14 121.51 (16) C4—C3—H3 120.2
C17—C16—C29 121.05 (16) C2—C3—H3 120.2
C15—C16—C29 121.35 (17) C2—C3—C4 119.58 (15)
C15—C16—C17 117.58 (15) H30E—C30—H30F 109.5
C16—C17—H17 119.2 H30D—C30—H30F 109.5
C18—C17—H17 119.2 H30C—C30—H30F 141.1
C18—C17—C16 121.64 (15) H30B—C30—H30F 56.3
C13—C18—H18 119.7 H30A—C30—H30F 56.3
C17—C18—H18 119.7 C22—C30—H30F 109.5
C17—C18—C13 120.66 (15) H30D—C30—H30E 109.5
C20—C19—C11 120.91 (12) H30C—C30—H30E 56.3
C24—C19—C11 121.41 (12) H30B—C30—H30E 141.1
C24—C19—C20 117.58 (13) H30A—C30—H30E 56.3
C1—C2—H2 119.8 C22—C30—H30E 109.5
C3—C2—H2 119.8 H30C—C30—H30D 56.3
C3—C2—C1 120.33 (15) H30B—C30—H30D 56.3
C19—C20—H20 119.5 H30A—C30—H30D 141.1
C21—C20—H20 119.5 C22—C30—H30D 109.5
C21—C20—C19 120.91 (14) H30B—C30—H30C 109.5
C20—C21—H21 119.1 H30A—C30—H30C 109.5
C22—C21—H21 119.1 C22—C30—H30C 109.5
C22—C21—C20 121.75 (15) H30A—C30—H30B 109.5
C21—C22—C30 121.17 (18) C22—C30—H30B 109.5
C23—C22—C30 121.71 (18) C22—C30—H30A 109.5
C23—C22—C21 117.12 (15) C5—C4—H4 119.6
C24—C23—H23 119.1 C3—C4—H4 119.6
C22—C23—H23 119.1 C3—C4—C5 120.72 (15)
C22—C23—C24 121.85 (15) C6—C5—H5 119.5
C23—C24—H24 119.6 C4—C5—H5 119.5
C19—C24—H24 119.6 C4—C5—C6 120.97 (14)
C19—C24—C23 120.75 (15) C1—C6—C7 119.85 (12)
C28—C25—C7 108.75 (12) C5—C6—C7 122.14 (13)
C26—C25—C7 112.72 (11) C5—C6—C1 118.00 (13)
C27—C25—C7 109.05 (13) C25—C7—H7 105.4
C26—C25—C28 108.63 (13) C8—C7—H7 105.4
C27—C25—C28 108.17 (13) C6—C7—H7 105.4
C27—C25—C26 109.42 (13) C8—C7—C25 116.43 (11)
H26B—C26—H26C 109.5 C6—C7—C25 114.19 (11)
H26A—C26—H26C 109.5 C6—C7—C8 108.91 (11)
C25—C26—H26C 109.5 H8A—C8—H8B 107.2
H26A—C26—H26B 109.5 C7—C8—H8B 108.0
C25—C26—H26B 109.5 C9—C8—H8B 108.0
C25—C26—H26A 109.5 C7—C8—H8A 108.0
H27B—C27—H27C 109.5 C9—C8—H8A 108.0
H27A—C27—H27C 109.5 C9—C8—C7 117.37 (10)
C25—C27—H27C 109.5 C10—C9—C11 111.94 (10)
H27A—C27—H27B 109.5 C8—C9—C11 119.46 (11)
C25—C27—H27B 109.5 O1—C9—C11 102.04 (10)
C25—C27—H27A 109.5 C8—C9—C10 113.40 (11)
H28B—C28—H28C 109.5 O1—C9—C10 101.45 (10)
H28A—C28—H28C 109.5 O1—C9—C8 105.91 (9)
C25—C28—H28C 109.5 C12—N1—O1 108.71 (11)
H28A—C28—H28B 109.5 N1—O1—C9 108.53 (9)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C24—H24···O1i 0.93 2.54 3.4254 (17) 160
C29—H29F···N1ii 0.96 2.62 3.546 (2) 161
C26—H26A···Cg2i 0.96 2.77 3.6643 (16) 155

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2437).

References

  1. Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067. [DOI] [PMC free article] [PubMed]
  2. Al Houari, G., Baba, M. F., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & et Kerbal, A. (2008). J. Mar. Chim. Heterocycl. 7, 16–20.
  3. Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.
  4. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358;
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025086/fj2437sup1.cif

e-67-o1862-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025086/fj2437Isup2.hkl

e-67-o1862-Isup2.hkl (219.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025086/fj2437Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES