Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):m906–m907. doi: 10.1107/S1600536811021805

cis-Dichloridobis­(5,5′-dimethyl-2,2′-bipyridine)­manganese(II) 2.5-hydrate

Lívia Batista Lopes a, Charlane Cimini Corrêa a, Renata Diniz a,*
PMCID: PMC3152002  PMID: 21836893

Abstract

The metal site in the title compound [MnCl2(C12H12N2)2]·2.5H2O has a distorted octa­hedral geometry, coordinated by four N atoms of two 5,5′-dimethyl-2,2′-dipyridine ligands and two Cl atoms. Two and a half water molecules of hydration per complex unit are observed in the crystal structure. The compounds extend along the c axis with O—H⋯Cl, O—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds and π–π inter­actions [centroid-centroid distance = 3.70 (2) Å] contributing substanti­ally to the crystal packing. The Mn and one of the water O atoms, the latter being half-occupied, are located on special positions, in this case a rotation axis of order 2.

Related literature

For the structures and applications of bipyridine and analogous ligands, see: Hazell (2004); Bakir et al. (1992); Cordes et al. (1982); Hung-Low et al. (2009). For the structure and applications of 5,5′-dimethyl-2,2′-dipyridine, see: Marandi et al. (2009); van Albada et al. (2005). For weak inter­molecular inter­actions, see: Calhorda (2000); Desiraju (1996); Janiak (2000).graphic file with name e-67-0m906-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C12H12N2)2]·2.5H2O

  • M r = 539.35

  • Monoclinic, Inline graphic

  • a = 18.6703 (9) Å

  • b = 14.0598 (4) Å

  • c = 12.0536 (7) Å

  • β = 122.430 (7)°

  • V = 2670.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.47 × 0.35 × 0.34 mm

Data collection

  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)] T min = 0.470, T max = 0.697

  • 11860 measured reflections

  • 3317 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.150

  • S = 1.09

  • 3317 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021805/im2285sup1.cif

e-67-0m906-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021805/im2285Isup2.hkl

e-67-0m906-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.84 2.42 3.243 (3) 168
O1—H1B⋯Cl1i 0.81 2.73 3.358 (4) 136
O2—H2A⋯O1 0.86 2.16 2.951 (6) 153
C3—H3⋯O1ii 0.93 2.49 3.257 (5) 140
C6—H6A⋯Cl1i 0.96 2.79 3.717 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank CNPq, CAPES and FAPEMIG (Brazil­ian agencies) for financial support, and LabCri (Federal University of Minas Gerais) for measuring the X-ray diffraction data.

supplementary crystallographic information

Comment

Bipyridine and analogous ligands are commonly used in the formation of different complexes with a general variety of transition metals (Hazell, 2004; Bakir et al., 1992; Cordes et al.,1982; Hung-Low et al.,2009;). The ligand 5,5'-Dimethyl-2,2'-dipyridine (abbreviated as dmdpy) acts as a chelator and usually gives rise to monomeric compounds (Marandi et al., 2009). Only a limited number of X-ray crystal structures with the ligand dmdpy has been published (van Albada et al., 2005). In this study we used the ligand 5,5'-dimethyl-2,2'-dipyridine and manganese chloride tetrahydrate. This mixture resulted in the compound [Mn(C12H12N2)2Cl2] × 2.5 H2O (Scheme 1).

The molecular structure of the complex unit of the titlecompound [Mn(C12H12N2)2Cl2] × 2.5 H2O is shown in Figure 1. The metal site is coordinated by four nitrogen atoms N1, N2, N1i and N2i of the ligand dmdpy and two chlorides Cl1 and Cl1i adopting a distorted octahedral geometry as evidenced by the Mn—N1 distances (2.3111 (19) Å), Mn—N2 (2.245 (2) Å) and Mn—Cl1 (2.4702 (6) Å). The Mn atom is located in a special position, which in this case is a rotation axis of order 2.

The compound crystallizes in the monoclinic system and its unit cell is shown in Figure 2. The compound [Mn(C12H12N2)2Cl2] × 2.5 H2O is a complex that stretches along the crystallographic c axis with the molecular entities being interconnected by weak hydrogen bonds (Desiraju, 1996; Calhorda, 2000) shown in Figure 2. These hydrogen bonds are formed by the interaction between oxygen atoms of water molecules O1 and O2 and the chlorine atom Cl1 which is coordinated to the metal. The distances O1—O2 and O1—Cl1 charge 2.951 (6) Å and 3.243 (3) Å, respectively. π-π interactions between aromatic rings of the nitrogen ligand dmdpy are also shown in Figure 2. These interactions contribute substantially to the crystal packing (Janiak, 2000). In this compound the centroid-centroid distance is 3.70 (2) Å, and there was a substantial overlap between the aromatic rings of the ligand dmdpy, being centroid-plane distance of 3.45 (1)Å and the horizontal displacement of 1.37 (2) Å.

Experimental

All chemicals were obtained commercially and used without further purification. The complex was synthesized by mixing of 0.38 mmol of dmdpy dissolved in ethanol and 0.38 mmol of MnCl2 × 4 H2O dissolved in water. The mixture was placed under agitation for 40 h. After a few weeks, yellow single crystals suitable for the analysis of X-ray diffraction were obtained (yield: 39%).

Refinement

H atoms were positioned geometrically and refined using the riding model approximation with C—H = 0.95 Å, and Uiso(H) was refined in group. H atoms of water molecule were located from electron density map, fixed in these positions and assigned the same isotropic displacement parameters for all H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the complex unit of the title compound [Mn(C12H12N2)2Cl2] × 2.5 H2O. Water molecules were omitted for better visualization. Symmetry code: i (1 - x, y, 1/2 - z).

Fig. 2.

Fig. 2.

Unit cell of the compound [Mn(C12H12N2)2Cl2] × 2.5 H2O (z = 4), hydrogen bonds chain extending along the c axis and π-π interactions between the rings aromatic ligand dmdpy are depicted as dashed lines.

Crystal data

[MnCl2(C12H12N2)2]·2.5H2O F(000) = 1120
Mr = 539.35 Dx = 1.341 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6304 reflections
a = 18.6703 (9) Å θ = 2.9–29.4°
b = 14.0598 (4) Å µ = 0.72 mm1
c = 12.0536 (7) Å T = 293 K
β = 122.430 (7)° Prismatic, yellow
V = 2670.6 (2) Å3 0.47 × 0.35 × 0.34 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer 3317 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2499 reflections with I > 2σ(I)
graphite Rint = 0.025
Detector resolution: 10.4186 pixels mm-1 θmax = 29.4°, θmin = 2.9°
ω scans h = −25→23
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)] k = −14→18
Tmin = 0.470, Tmax = 0.697 l = −16→16
11860 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.094P)2 + 0.4813P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3317 reflections Δρmax = 0.72 e Å3
155 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods Absolute structure: no

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn 0.5000 0.31073 (3) 0.2500 0.03326 (18)
Cl1 0.56731 (3) 0.43196 (4) 0.42532 (6) 0.0429 (2)
N1 0.42155 (12) 0.19415 (12) 0.0968 (2) 0.0391 (4)
N2 0.38759 (11) 0.27687 (13) 0.26398 (18) 0.0359 (4)
C1 0.37348 (15) 0.32044 (16) 0.3488 (2) 0.0407 (5)
H1 0.4120 0.3667 0.4034 0.049*
C5 0.33239 (14) 0.20969 (15) 0.1835 (2) 0.0368 (5)
C4 0.26252 (15) 0.18577 (17) 0.1891 (3) 0.0466 (6)
H4 0.2249 0.1393 0.1334 0.056*
C2 0.30477 (16) 0.30103 (17) 0.3606 (3) 0.0447 (6)
C3 0.24897 (16) 0.2312 (2) 0.2779 (3) 0.0523 (7)
H3 0.2023 0.2150 0.2824 0.063*
C7 0.35069 (14) 0.16493 (14) 0.0903 (2) 0.0386 (5)
C8 0.29693 (17) 0.09802 (17) −0.0022 (2) 0.0511 (6)
H8 0.2475 0.0794 −0.0072 0.061*
C11 0.43965 (16) 0.15765 (17) 0.0132 (2) 0.0477 (6)
H11 0.4884 0.1792 0.0182 0.057*
C10 0.39085 (19) 0.08913 (18) −0.0818 (3) 0.0552 (7)
C9 0.3180 (2) 0.05955 (18) −0.0865 (3) 0.0580 (7)
H9 0.2833 0.0135 −0.1470 0.070*
C6 0.2939 (2) 0.3543 (2) 0.4579 (3) 0.0689 (9)
H6A 0.3391 0.3995 0.5036 0.103*
H6B 0.2950 0.3105 0.5199 0.103*
H6C 0.2405 0.3872 0.4128 0.103*
C12 0.4172 (2) 0.0531 (2) −0.1719 (3) 0.0782 (10)
H12A 0.4692 0.0834 −0.1506 0.117*
H12B 0.3737 0.0673 −0.2613 0.117*
H12C 0.4257 −0.0145 −0.1614 0.117*
O1 0.5956 (2) 0.4141 (2) 0.7145 (3) 0.1311 (14)
H1A 0.5803 0.4187 0.6356 0.197*
H1B 0.5699 0.4548 0.7272 0.197*
O2 0.5000 0.2629 (5) 0.7500 0.112 (3) 0.50
H2A 0.5382 0.2904 0.7422 0.168* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.0241 (3) 0.0282 (3) 0.0388 (3) 0.000 0.0111 (2) 0.000
Cl1 0.0341 (3) 0.0394 (3) 0.0431 (3) −0.0026 (2) 0.0127 (3) −0.0082 (2)
N1 0.0330 (10) 0.0304 (9) 0.0398 (10) 0.0005 (7) 0.0101 (8) −0.0025 (7)
N2 0.0286 (9) 0.0321 (9) 0.0364 (9) −0.0054 (7) 0.0105 (8) 0.0017 (7)
C1 0.0339 (11) 0.0390 (12) 0.0416 (12) −0.0089 (9) 0.0153 (10) −0.0011 (9)
C5 0.0307 (11) 0.0281 (10) 0.0350 (11) −0.0042 (8) 0.0067 (9) 0.0071 (8)
C4 0.0370 (12) 0.0404 (13) 0.0477 (14) −0.0143 (10) 0.0130 (11) 0.0020 (10)
C2 0.0415 (13) 0.0437 (13) 0.0475 (14) −0.0073 (10) 0.0230 (11) 0.0053 (10)
C3 0.0403 (13) 0.0560 (16) 0.0563 (15) −0.0153 (12) 0.0231 (12) 0.0050 (12)
C7 0.0364 (11) 0.0249 (9) 0.0354 (11) −0.0015 (9) 0.0065 (9) 0.0046 (8)
C8 0.0501 (14) 0.0383 (12) 0.0428 (13) −0.0147 (11) 0.0102 (12) −0.0001 (10)
C11 0.0422 (13) 0.0402 (12) 0.0487 (14) 0.0020 (10) 0.0163 (11) −0.0068 (11)
C10 0.0615 (17) 0.0373 (13) 0.0454 (14) 0.0039 (12) 0.0146 (13) −0.0061 (10)
C9 0.0666 (18) 0.0354 (13) 0.0454 (15) −0.0120 (12) 0.0125 (13) −0.0077 (10)
C6 0.0645 (18) 0.080 (2) 0.079 (2) −0.0247 (17) 0.0493 (17) −0.0175 (17)
C12 0.092 (3) 0.068 (2) 0.060 (2) 0.0055 (18) 0.0315 (19) −0.0192 (15)
O1 0.166 (3) 0.157 (3) 0.110 (2) 0.121 (3) 0.101 (2) 0.068 (2)
O2 0.092 (5) 0.047 (4) 0.135 (7) 0.000 0.020 (5) 0.000

Geometric parameters (Å, °)

Mn—Cl1 2.4702 (6) C7—C8 1.391 (3)
Mn—N1 2.3111 (19) C8—C9 1.382 (5)
Mn—N2 2.245 (2) C9—C10 1.394 (6)
O1—H1B 0.8100 C10—C12 1.502 (6)
O1—H1A 0.8400 C10—C11 1.397 (4)
O2—H2A 0.8600 C1—H1 0.9300
O2—H2Ai 0.8600 C3—H3 0.9300
N1—C11 1.326 (4) C4—H4 0.9300
N1—C7 1.347 (3) C6—H6A 0.9600
N2—C5 1.350 (2) C6—H6B 0.9600
N2—C1 1.334 (3) C6—H6C 0.9600
C1—C2 1.391 (5) C8—H8 0.9300
C2—C3 1.389 (4) C9—H9 0.9300
C2—C6 1.494 (5) C11—H11 0.9300
C3—C4 1.381 (4) C12—H12B 0.9600
C4—C5 1.383 (4) C12—H12C 0.9600
C5—C7 1.480 (3) C12—H12A 0.9600
Cl1···C1 3.581 (3) O1iv···C3ii 3.257 (5)
Cl1···O1 3.243 (3) N1···N1ii 3.259 (3)
Cl1···Cl1ii 3.5759 (9) N1···N2ii 3.233 (3)
Cl1···N1ii 3.3695 (18) N1···N2 2.681 (3)
Cl1···O1iii 3.358 (4) N2···C11ii 3.337 (4)
O1···O2 2.951 (6) C3···O1v 3.257 (5)
O1···Cl1iii 3.358 (4)
Cl1—Mn—N1 170.62 (6) N1—C7—C5 116.49 (19)
Cl1—Mn—N2 98.59 (5) C5—C7—C8 122.4 (3)
Cl1—Mn—Cl1ii 92.74 (2) C7—C8—C9 119.1 (3)
Cl1—Mn—N1ii 89.55 (5) C8—C9—C10 120.7 (3)
Cl1—Mn—N2ii 98.24 (5) C9—C10—C12 124.2 (3)
N1—Mn—N2 72.07 (8) C11—C10—C12 120.2 (4)
Cl1ii—Mn—N1 89.55 (5) C9—C10—C11 115.6 (3)
N1—Mn—N1ii 89.65 (7) N1—C11—C10 124.8 (3)
N1—Mn—N2ii 90.40 (8) C2—C1—H1 118.00
Cl1ii—Mn—N2 98.24 (5) N2—C1—H1 118.00
N1ii—Mn—N2 90.40 (8) C4—C3—H3 120.00
N2—Mn—N2ii 155.51 (7) C2—C3—H3 120.00
Cl1ii—Mn—N1ii 170.62 (6) C5—C4—H4 120.00
Cl1ii—Mn—N2ii 98.59 (5) C3—C4—H4 120.00
N1ii—Mn—N2ii 72.07 (8) C2—C6—H6C 109.00
H1A—O1—H1B 107.00 C2—C6—H6A 110.00
H2A—O2—H2Ai 127.00 C2—C6—H6B 110.00
Mn—N1—C11 124.8 (2) H6B—C6—H6C 109.00
Mn—N1—C7 116.40 (15) H6A—C6—H6C 109.00
C7—N1—C11 118.7 (2) H6A—C6—H6B 110.00
C1—N2—C5 118.9 (2) C9—C8—H8 120.00
Mn—N2—C5 118.63 (17) C7—C8—H8 120.00
Mn—N2—C1 122.49 (17) C8—C9—H9 120.00
N2—C1—C2 124.1 (2) C10—C9—H9 120.00
C3—C2—C6 123.5 (3) N1—C11—H11 118.00
C1—C2—C3 116.3 (3) C10—C11—H11 118.00
C1—C2—C6 120.2 (3) C10—C12—H12B 109.00
C2—C3—C4 120.3 (3) C10—C12—H12C 109.00
C3—C4—C5 119.6 (3) H12A—C12—H12C 110.00
N2—C5—C7 116.4 (2) H12B—C12—H12C 109.00
N2—C5—C4 120.8 (2) H12A—C12—H12B 110.00
C4—C5—C7 122.8 (2) C10—C12—H12A 109.00
N1—C7—C8 121.1 (2)
N2—Mn—N1—C7 0.40 (15) Mn—N2—C1—C2 −179.72 (19)
N2—Mn—N1—C11 177.7 (2) C5—N2—C1—C2 0.1 (3)
Cl1ii—Mn—N1—C7 −98.41 (15) Mn—N2—C5—C4 179.52 (18)
Cl1ii—Mn—N1—C11 78.9 (2) Mn—N2—C5—C7 −1.1 (2)
N1ii—Mn—N1—C7 90.94 (16) C1—N2—C5—C4 −0.3 (3)
N1ii—Mn—N1—C11 −91.8 (2) C1—N2—C5—C7 179.10 (19)
N2ii—Mn—N1—C7 163.01 (16) N2—C1—C2—C3 0.4 (4)
N2ii—Mn—N1—C11 −19.7 (2) N2—C1—C2—C6 −179.4 (3)
Cl1—Mn—N2—C1 1.11 (17) C1—C2—C3—C4 −0.7 (4)
Cl1—Mn—N2—C5 −178.73 (15) C6—C2—C3—C4 179.1 (3)
N1—Mn—N2—C1 −179.78 (19) C2—C3—C4—C5 0.5 (4)
N1—Mn—N2—C5 0.38 (15) C3—C4—C5—N2 0.0 (4)
Cl1ii—Mn—N2—C1 −92.95 (17) C3—C4—C5—C7 −179.4 (2)
Cl1ii—Mn—N2—C5 87.21 (16) N2—C5—C7—N1 1.4 (3)
N1ii—Mn—N2—C1 90.71 (17) N2—C5—C7—C8 −176.9 (2)
N1ii—Mn—N2—C5 −89.13 (16) C4—C5—C7—N1 −179.2 (2)
N2ii—Mn—N2—C1 134.05 (18) C4—C5—C7—C8 2.5 (3)
N2ii—Mn—N2—C5 −45.8 (3) N1—C7—C8—C9 1.5 (3)
Mn—N1—C7—C5 −1.1 (2) C5—C7—C8—C9 179.7 (2)
Mn—N1—C7—C8 177.24 (16) C7—C8—C9—C10 −1.8 (4)
C11—N1—C7—C5 −178.5 (2) C8—C9—C10—C11 0.8 (4)
C11—N1—C7—C8 −0.2 (3) C8—C9—C10—C12 −178.3 (3)
Mn—N1—C11—C10 −178.1 (2) C9—C10—C11—N1 0.6 (4)
C7—N1—C11—C10 −0.9 (4) C12—C10—C11—N1 179.7 (3)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, −y+1/2, −z+1; (v) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Cl1 0.84 2.42 3.243 (3) 168
O1—H1B···Cl1iii 0.81 2.73 3.358 (4) 136
O2—H2A···O1 0.86 2.16 2.951 (6) 153
C3—H3···O1v 0.93 2.49 3.257 (5) 140
C6—H6A···Cl1iii 0.96 2.79 3.717 (4) 162

Symmetry codes: (iii) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2285).

References

  1. Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412.
  2. Bakir, M., Paulson, S., Goodson, P. & Sullivan, B. P. (1992). Inorg. Chem. 31, 1127–1129.
  3. Calhorda, M. J. (2000). Chem. Commun. pp. 801–809.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Cordes, A. W., Durham, B., Swepston, P. N., Pennington, W. T., Condren, S. M., Jensen, R. & Walsh, J. L. (1982). J. Coord. Chem. 11, 251–260.
  6. Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Hazell, A. (2004). Polyhedron, 23, 2081–2083.
  9. Hung-Low, F., Renz, A. & Klausmeyer, K. K. (2009). Polyhedron, 28, 407–415.
  10. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Marandi, F., Pantenburg, I. & Meyer, G. (2009). Z. Anorg. Allg. Chem. 635, 2558–2562.
  13. Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021805/im2285sup1.cif

e-67-0m906-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021805/im2285Isup2.hkl

e-67-0m906-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES