Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 22;67(Pt 7):o1764. doi: 10.1107/S1600536811023543

3-Ethyl-5-(4-meth­oxy­phen­oxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine

S Ranjith a, A SubbiahPandi a,*, A D Suresh b, K Pitchumani b
PMCID: PMC3152004  PMID: 21837144

Abstract

In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking inter­action between the phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.772 (2) Å, inter­planar distance = 3.546 (2) Å and slippage = 1.286 (2) Å].

Related literature

For the biological activity of pyridine derivatives, see: Passannanti et al. (1998); Jiyeon et al. (2010); Abdel-Alim et al. (2005); Girgis et al. (2006); Slominska et al. (2008); Spanka et al. (2010). For a related structure, see: Ouzidan et al. (2010). For sp 3 hybridization, see: Beddoes et al. (1986).graphic file with name e-67-o1764-scheme1.jpg

Experimental

Crystal data

  • C20H18N4O2

  • M r = 346.38

  • Monoclinic, Inline graphic

  • a = 13.6591 (4) Å

  • b = 13.7104 (4) Å

  • c = 9.3177 (2) Å

  • β = 98.940 (1)°

  • V = 1723.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.981, T max = 0.985

  • 24827 measured reflections

  • 5887 independent reflections

  • 3938 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.140

  • S = 1.00

  • 5887 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023543/lx2189sup1.cif

e-67-o1764-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023543/lx2189Isup2.hkl

e-67-o1764-Isup2.hkl (282.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023543/lx2189Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Pyridine derivatives has numerous applications in medicinal chemistry (Passannanti et al., 1998). Furthermore, the imidazo[4,5-b]pyridine moiety is also an important heterocyclic nucleus which has been used extensively in medicinal chemistry. In fact, the heterocycles derived from these intermediates have been tested for their potential as anti-neuroinflammatory (Jiyeon et al., 2010). Pyridine-3-carboxamides have gained attention because of their diverse pharmacological properties such as anti-inflammatory (Abdel-Alim et al., 2005), anticancer (Girgis et al., 2006), cytoprotective (Slominska et al., 2008), and anxiolytic (Spanka et al., 2010) activities. Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

The bond lengths and angles in (Fig. 1) agree with those observed in other imidazopyridine derivatives (Ouzidan et al., 2010). The imidazopyridine ring system is essentially planar, with maximum deviation of 0.013 (1)° for atom C1. The sum of bond angles around N2[359.2 (9)°] of the imidazole ring is in accordance with sp3 hybridization (Beddoes et al., 1986). The imidazopyridine ring system makes dihedral angles of 35.5 (5) and 87.6 (5)°, respectively, with the pyridine and phenyl rings and also the dihedral angle between the pyridine and phenyl ring is 87.0 (6)°. It shows that the phenyl ring is perpendicular to both the imidazopyridine and pyridine rings. The atoms O1 and O2 are deviated by 0.039 (1) and - 0.021 (1)Å from the leastsquares plane of the phenyl ring.

The molecules lack hydrogen bonding functionality and pack in layers parallel to the (100) planes. The crystal structure is stabilized by an aromatic π–π stacking interaction between the phenyl rings of adjacent molecules, with a Cg···Cg distance of 3.772 (2) Å and an interplanar distance of 3.546 (3) Å resulting in a slippage of 1.286 (3) Å (Cg is the centroid of the C14–C19 phenyl ring).

Experimental

N-ethyl-6-(4-methoxyphenoxy)pyridin-2-amine (0.23 g, 1 mmol) and amide (0.12 g, 1 mmol) successively added to Al3+–Y in xylene at 145°C. After stirring for 16 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation, the resulting crude product was finally purified by column chromatography (silica gel). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethylacetate at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C20H18N4O2 F(000) = 728
Mr = 346.38 Dx = 1.335 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5887 reflections
a = 13.6591 (4) Å θ = 1.5–32.0°
b = 13.7104 (4) Å µ = 0.09 mm1
c = 9.3177 (2) Å T = 293 K
β = 98.940 (1)° Block, white crystalline
V = 1723.74 (8) Å3 0.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5887 independent reflections
Radiation source: fine-focus sealed tube 3938 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 10.0 pixels mm-1 θmax = 32.1°, θmin = 1.5°
ω and φ scans h = −20→20
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −20→20
Tmin = 0.981, Tmax = 0.985 l = −13→12
24827 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: difference Fourier map
wR(F2) = 0.140 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2334P] where P = (Fo2 + 2Fc2)/3
5887 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.34424 (9) 0.10472 (9) 0.42615 (13) 0.0383 (3)
C2 0.34457 (9) 0.18018 (9) 0.52777 (14) 0.0406 (3)
H2 0.3850 0.2344 0.5240 0.049*
C3 0.28465 (9) 0.17335 (9) 0.63296 (13) 0.0389 (3)
H3 0.2834 0.2222 0.7020 0.047*
C4 0.22585 (8) 0.09028 (8) 0.63192 (12) 0.0335 (2)
C5 0.23419 (8) 0.02078 (8) 0.52553 (12) 0.0330 (2)
C6 0.12671 (8) −0.02604 (8) 0.66320 (12) 0.0332 (2)
C7 0.16889 (10) −0.14643 (8) 0.46766 (13) 0.0403 (3)
H7A 0.1356 −0.1952 0.5182 0.048*
H7B 0.2363 −0.1683 0.4670 0.048*
C8 0.11655 (12) −0.13785 (11) 0.31346 (15) 0.0547 (4)
H8A 0.0490 −0.1186 0.3137 0.082*
H8B 0.1181 −0.1997 0.2655 0.082*
H8C 0.1493 −0.0897 0.2629 0.082*
C9 0.05197 (8) −0.08407 (8) 0.72257 (12) 0.0341 (2)
C10 0.05089 (10) −0.08248 (9) 0.87147 (13) 0.0427 (3)
H10 0.0986 −0.0476 0.9329 0.051*
C11 −0.02193 (11) −0.13343 (10) 0.92665 (15) 0.0500 (3)
H11 −0.0225 −0.1305 1.0262 0.060*
C12 −0.08936 (10) −0.18810 (10) 0.70402 (15) 0.0459 (3)
H12 −0.1370 −0.2251 0.6457 0.055*
C13 −0.02073 (9) −0.13820 (9) 0.63755 (13) 0.0386 (3)
H13 −0.0233 −0.1409 0.5373 0.046*
C14 0.40351 (9) 0.04175 (9) 0.22118 (14) 0.0425 (3)
C15 0.33767 (10) 0.04307 (10) 0.09494 (15) 0.0488 (3)
H15 0.2913 0.0930 0.0769 0.059*
C16 0.34062 (10) −0.03057 (11) −0.00606 (15) 0.0508 (3)
H16 0.2964 −0.0299 −0.0927 0.061*
C17 0.40900 (10) −0.10480 (10) 0.02181 (15) 0.0479 (3)
C18 0.47462 (11) −0.10467 (11) 0.14910 (16) 0.0546 (4)
H18 0.5211 −0.1544 0.1679 0.066*
C19 0.47204 (10) −0.03162 (11) 0.24862 (16) 0.0512 (3)
H19 0.5167 −0.0318 0.3348 0.061*
C20 0.35584 (16) −0.18189 (16) −0.2055 (2) 0.0799 (5)
H20A 0.2878 −0.1767 −0.1920 0.120*
H20B 0.3653 −0.2416 −0.2555 0.120*
H20C 0.3727 −0.1276 −0.2621 0.120*
N1 0.29165 (7) 0.02406 (7) 0.42238 (11) 0.0374 (2)
N2 0.17080 (7) −0.05379 (7) 0.54614 (10) 0.0340 (2)
N3 0.15774 (7) 0.05932 (7) 0.71772 (10) 0.0357 (2)
N4 −0.09155 (9) −0.18655 (9) 0.84645 (13) 0.0512 (3)
O1 0.40353 (7) 0.11775 (7) 0.32231 (11) 0.0511 (2)
O2 0.41700 (9) −0.18162 (9) −0.06945 (12) 0.0716 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0354 (6) 0.0366 (6) 0.0433 (6) −0.0005 (4) 0.0079 (5) 0.0034 (5)
C2 0.0382 (6) 0.0315 (6) 0.0517 (7) −0.0044 (5) 0.0052 (5) −0.0009 (5)
C3 0.0407 (6) 0.0313 (5) 0.0433 (6) −0.0008 (5) 0.0022 (5) −0.0056 (5)
C4 0.0353 (5) 0.0304 (5) 0.0338 (5) 0.0009 (4) 0.0027 (4) −0.0008 (4)
C5 0.0350 (5) 0.0299 (5) 0.0338 (5) 0.0000 (4) 0.0042 (4) 0.0004 (4)
C6 0.0364 (5) 0.0316 (5) 0.0318 (5) 0.0020 (4) 0.0057 (4) 0.0008 (4)
C7 0.0471 (7) 0.0287 (5) 0.0468 (7) −0.0017 (5) 0.0128 (5) −0.0070 (5)
C8 0.0681 (9) 0.0502 (8) 0.0454 (7) −0.0077 (7) 0.0075 (7) −0.0135 (6)
C9 0.0375 (6) 0.0297 (5) 0.0360 (5) 0.0038 (4) 0.0084 (4) 0.0031 (4)
C10 0.0508 (7) 0.0416 (6) 0.0365 (6) −0.0059 (5) 0.0091 (5) −0.0021 (5)
C11 0.0647 (9) 0.0483 (7) 0.0403 (7) −0.0071 (6) 0.0187 (6) 0.0014 (6)
C12 0.0408 (7) 0.0469 (7) 0.0496 (7) −0.0049 (5) 0.0064 (5) 0.0004 (6)
C13 0.0394 (6) 0.0402 (6) 0.0357 (6) 0.0012 (5) 0.0044 (5) 0.0025 (5)
C14 0.0419 (6) 0.0421 (6) 0.0470 (7) −0.0027 (5) 0.0181 (5) 0.0038 (5)
C15 0.0454 (7) 0.0443 (7) 0.0571 (8) 0.0077 (6) 0.0097 (6) 0.0095 (6)
C16 0.0489 (7) 0.0559 (8) 0.0462 (7) 0.0039 (6) 0.0025 (6) 0.0070 (6)
C17 0.0490 (7) 0.0491 (7) 0.0473 (7) 0.0052 (6) 0.0129 (6) 0.0019 (6)
C18 0.0499 (8) 0.0579 (9) 0.0554 (8) 0.0177 (7) 0.0060 (6) 0.0030 (7)
C19 0.0466 (7) 0.0594 (9) 0.0468 (7) 0.0080 (6) 0.0045 (6) 0.0042 (6)
C20 0.0881 (13) 0.0854 (13) 0.0627 (11) 0.0002 (11) 0.0005 (9) −0.0198 (10)
N1 0.0399 (5) 0.0342 (5) 0.0396 (5) −0.0011 (4) 0.0109 (4) −0.0010 (4)
N2 0.0402 (5) 0.0285 (4) 0.0342 (5) −0.0025 (4) 0.0085 (4) −0.0030 (4)
N3 0.0396 (5) 0.0329 (5) 0.0346 (5) 0.0001 (4) 0.0060 (4) −0.0017 (4)
N4 0.0538 (7) 0.0511 (7) 0.0517 (7) −0.0089 (5) 0.0174 (5) 0.0016 (5)
O1 0.0557 (6) 0.0447 (5) 0.0585 (6) −0.0112 (4) 0.0262 (5) −0.0036 (4)
O2 0.0796 (8) 0.0689 (7) 0.0634 (7) 0.0212 (6) 0.0021 (6) −0.0142 (6)

Geometric parameters (Å, °)

C1—N1 1.3161 (15) C10—H10 0.9300
C1—O1 1.3667 (14) C11—N4 1.3312 (18)
C1—C2 1.4020 (17) C11—H11 0.9300
C2—C3 1.3744 (17) C12—N4 1.3322 (17)
C2—H2 0.9300 C12—C13 1.3823 (17)
C3—C4 1.3928 (16) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—N3 1.3842 (14) C14—C15 1.365 (2)
C4—C5 1.3924 (15) C14—C19 1.3708 (19)
C5—N1 1.3328 (14) C14—O1 1.4048 (16)
C5—N2 1.3724 (14) C15—C16 1.385 (2)
C6—N3 1.3192 (14) C15—H15 0.9300
C6—N2 1.3788 (13) C16—C17 1.3784 (19)
C6—C9 1.4686 (15) C16—H16 0.9300
C7—N2 1.4638 (14) C17—O2 1.3687 (17)
C7—C8 1.5066 (19) C17—C18 1.371 (2)
C7—H7A 0.9700 C18—C19 1.369 (2)
C7—H7B 0.9700 C18—H18 0.9300
C8—H8A 0.9600 C19—H19 0.9300
C8—H8B 0.9600 C20—O2 1.406 (2)
C8—H8C 0.9600 C20—H20A 0.9600
C9—C13 1.3857 (17) C20—H20B 0.9600
C9—C10 1.3899 (16) C20—H20C 0.9600
C10—C11 1.3786 (18)
N1—C1—O1 118.16 (10) N4—C12—C13 124.07 (13)
N1—C1—C2 125.63 (11) N4—C12—H12 118.0
O1—C1—C2 116.21 (10) C13—C12—H12 118.0
C3—C2—C1 119.44 (11) C12—C13—C9 118.98 (11)
C3—C2—H2 120.3 C12—C13—H13 120.5
C1—C2—H2 120.3 C9—C13—H13 120.5
C2—C3—C4 117.22 (11) C15—C14—C19 120.64 (13)
C2—C3—H3 121.4 C15—C14—O1 119.97 (12)
C4—C3—H3 121.4 C19—C14—O1 119.35 (13)
N3—C4—C5 109.76 (10) C14—C15—C16 119.40 (13)
N3—C4—C3 133.26 (10) C14—C15—H15 120.3
C5—C4—C3 116.98 (10) C16—C15—H15 120.3
N1—C5—N2 125.53 (10) C17—C16—C15 120.04 (13)
N1—C5—C4 127.79 (10) C17—C16—H16 120.0
N2—C5—C4 106.68 (9) C15—C16—H16 120.0
N3—C6—N2 113.32 (9) O2—C17—C18 115.72 (12)
N3—C6—C9 122.41 (10) O2—C17—C16 124.63 (13)
N2—C6—C9 124.27 (10) C18—C17—C16 119.66 (13)
N2—C7—C8 112.19 (10) C19—C18—C17 120.31 (13)
N2—C7—H7A 109.2 C19—C18—H18 119.8
C8—C7—H7A 109.2 C17—C18—H18 119.8
N2—C7—H7B 109.2 C18—C19—C14 119.94 (13)
C8—C7—H7B 109.2 C18—C19—H19 120.0
H7A—C7—H7B 107.9 C14—C19—H19 120.0
C7—C8—H8A 109.5 O2—C20—H20A 109.5
C7—C8—H8B 109.5 O2—C20—H20B 109.5
H8A—C8—H8B 109.5 H20A—C20—H20B 109.5
C7—C8—H8C 109.5 O2—C20—H20C 109.5
H8A—C8—H8C 109.5 H20A—C20—H20C 109.5
H8B—C8—H8C 109.5 H20B—C20—H20C 109.5
C13—C9—C10 117.46 (11) C1—N1—C5 112.91 (10)
C13—C9—C6 123.59 (10) C5—N2—C6 105.53 (9)
C10—C9—C6 118.91 (11) C5—N2—C7 122.62 (9)
C11—C10—C9 118.99 (12) C6—N2—C7 131.19 (9)
C11—C10—H10 120.5 C6—N3—C4 104.72 (9)
C9—C10—H10 120.5 C11—N4—C12 116.31 (11)
N4—C11—C10 124.17 (12) C1—O1—C14 116.08 (9)
N4—C11—H11 117.9 C17—O2—C20 117.96 (13)
C10—C11—H11 117.9
N1—C1—C2—C3 −1.3 (2) O1—C14—C19—C18 −178.17 (12)
O1—C1—C2—C3 178.21 (11) O1—C1—N1—C5 −177.83 (11)
C1—C2—C3—C4 −0.17 (18) C2—C1—N1—C5 1.63 (18)
C2—C3—C4—N3 −179.45 (12) N2—C5—N1—C1 179.15 (11)
C2—C3—C4—C5 0.96 (16) C4—C5—N1—C1 −0.73 (17)
N3—C4—C5—N1 179.77 (11) N1—C5—N2—C6 −179.62 (11)
C3—C4—C5—N1 −0.54 (18) C4—C5—N2—C6 0.28 (12)
N3—C4—C5—N2 −0.12 (13) N1—C5—N2—C7 8.72 (18)
C3—C4—C5—N2 179.56 (10) C4—C5—N2—C7 −171.38 (10)
N3—C6—C9—C13 142.45 (12) N3—C6—N2—C5 −0.36 (13)
N2—C6—C9—C13 −37.09 (17) C9—C6—N2—C5 179.21 (10)
N3—C6—C9—C10 −35.08 (17) N3—C6—N2—C7 170.30 (11)
N2—C6—C9—C10 145.39 (12) C9—C6—N2—C7 −10.13 (19)
C13—C9—C10—C11 −0.54 (19) C8—C7—N2—C5 −76.72 (15)
C6—C9—C10—C11 177.14 (12) C8—C7—N2—C6 113.98 (14)
C9—C10—C11—N4 1.3 (2) N2—C6—N3—C4 0.28 (13)
N4—C12—C13—C9 1.1 (2) C9—C6—N3—C4 −179.30 (10)
C10—C9—C13—C12 −0.60 (17) C5—C4—N3—C6 −0.09 (13)
C6—C9—C13—C12 −178.16 (11) C3—C4—N3—C6 −179.70 (13)
C19—C14—C15—C16 −0.1 (2) C10—C11—N4—C12 −0.8 (2)
O1—C14—C15—C16 177.83 (11) C13—C12—N4—C11 −0.4 (2)
C14—C15—C16—C17 0.6 (2) N1—C1—O1—C14 −0.86 (17)
C15—C16—C17—O2 178.89 (13) C2—C1—O1—C14 179.63 (11)
C15—C16—C17—C18 −0.7 (2) C15—C14—O1—C1 90.64 (14)
O2—C17—C18—C19 −179.25 (14) C19—C14—O1—C1 −91.40 (14)
C16—C17—C18—C19 0.4 (2) C18—C17—O2—C20 −175.90 (15)
C17—C18—C19—C14 0.1 (2) C16—C17—O2—C20 4.5 (2)
C15—C14—C19—C18 −0.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2189).

References

  1. Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647. [DOI] [PubMed]
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476. [DOI] [PubMed]
  6. Jiyeon, O., Sangseop, K., Kyu-Yang, Y., Nak-Jung, K., Hyung, S. H., Je-Yoel, C. & Kyoungho, S. (2010). Biochem. Pharmacol. 79, 596–609.
  7. Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946. [DOI] [PMC free article] [PubMed]
  8. Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229–1235.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Slominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleoside Nucleotides Nucleic Acids, 27, 863–866. [DOI] [PubMed]
  12. Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023543/lx2189sup1.cif

e-67-o1764-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023543/lx2189Isup2.hkl

e-67-o1764-Isup2.hkl (282.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023543/lx2189Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES