Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1695. doi: 10.1107/S1600536811021829

1-Methyl-3-p-tolyl-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbonitrile

Rajeswari Gangadharan a, K Sethusankar b,*, Gandhi Murugan c, Manickam Bakthadoss c
PMCID: PMC3152008  PMID: 21837092

Abstract

In the title compound, C19H18N2O2, the dihedral angle between the mean planes of the fused chromeno and isoxazole units is 43.71 (7)°. The isoxazole and pyran rings exhibit envelope and half chair conformations, respectively. The crystal packing is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For uses of chromeno derivatives, see: Carlson (1993); Sokoloff et al. (1990) and for uses of isoxazole derivatives, see: Kozikowski (1984); Howe & Shelton (1990). For a related structure, see: Gangadharan et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For bond-length and bond-angle distortions, see: Rybarczyk-Pirek et al. (2002); Allen et al. (1987); Raju et al. (2002); For the synthesis of isoxazolidines, see: Bakthadoss & Murugan (2010).graphic file with name e-67-o1695-scheme1.jpg

Experimental

Crystal data

  • C19H18N2O2

  • M r = 306.35

  • Monoclinic, Inline graphic

  • a = 8.5344 (3) Å

  • b = 7.6980 (3) Å

  • c = 24.6017 (8) Å

  • β = 98.234 (2)°

  • V = 1599.62 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • 16796 measured reflections

  • 3606 independent reflections

  • 2571 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.04

  • 3606 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021829/rk2276sup1.cif

e-67-o1695-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021829/rk2276Isup2.hkl

e-67-o1695-Isup2.hkl (173.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021829/rk2276Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg3i 0.93 2.99 3.8075 (18) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

RG and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

Comment

Chromenopyrroles are used in the treatment of Parkinsons disease (Carlson, 1993) and memory disorders(Sokoloff et al., 1990). Isoxazoline derivatives have been shown to be efficient precursors for many synthetic intermediates including γ-amino alchols and β-hydroxy ketones (Kozikowski, 1984). Spiroisoxazolines display interesting biological properties such as herbicidal, plant growth regulators and antitumour activities (Howe & Shelton, 1990). These observations prompted us to synthesize the title compound with fused chromeno and isoxazole rings (Bakthadoss & Murugan, 2010).

In the title molecule (Fig 1), the fused benzene and pyran rings forming the chromeno system are inclined to one another at a dihedral angle of 4.47 (7)° between the best planes of the rings. The six membered pyran ring adopts a half chair conformation with puckering amplitude Q= 0.4782 (15)Å, θ = 50.93 (17)° and φ = 278.3 (2)° (Cremer & Pople, 1975). In the pyran ring the C—C bond distances vary from a minimum of 1.3901 (19)Å to a maximum of 1.5332 (19)Å in comparison with a typical aromatic bond length of 1.384 (13)Å (Allen et al., 1987). This could be attributed to the presence of the heteroatom O1 in the cyclic system and also to the fusion of the pyran and isoxazole ring systems (Rybarczyk-Pirek et al., 2002).

The fusion between the isoxazole and the pyran rings at C7 and C8 is in cis-form. The dihedral angle between the fused chromeno and the isoxazole moieties is 43.71 (7)°.

The isoxazole ring adopts an envelope conformation at N1 with puckering parameters q2 = 0.5179 (14)Å and φ2 = 217.11 (16)° (Cremer & Pople,1975). In the isoxazole ring, enlargement of bond lengths and bond angles are observed at the points of linkages of substituents and fusion to the pyran ring (Raju et al., 2002).

The phenyl ring (C12–C17) substituent is almost perpendicular to the five membered isoxazole ring, the dihedral angle between them being 81.26 (8)°. The geometric parameters of the title compound agree well with reported structure (Gangadharan et al., 2011).

The crystal packing is stabilized by C—H···C and C—H···π interactions (C3—H···Cg3, where Cg3 is the centroid of the six membered ring defined by atoms C1–C6). The symmetry codes are: (i) x, y-1, z; (ii) -x, 1/2+y, 1/2-z. The packing view of the title compound shown in Fig. 2.

Experimental

A mixture of compound (E)-2-((2-formylphenoxy)methyl)-3-p-tolylacylonitrile (1 mmol) with N-methylhydroxylamine hydrochloride (1.1 mmol), pyridine (0.24 ml,3 mmol) and ethanol (5 ml) were placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml), dilute HCl (5 ml) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concentrated. The crude product was purified by column chromatography to provide the pure desired product as colourless solid.

Refinement

All hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98Å and refined in riding model with isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H)=1.2Ueq(C) for other groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius.

Fig. 2.

Fig. 2.

Formation of C—H···C intermolecular bonding in the title compound.

Crystal data

C19H18N2O2 F(000) = 648
Mr = 306.35 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3606 reflections
a = 8.5344 (3) Å θ = 1.0–27.4°
b = 7.6980 (3) Å µ = 0.08 mm1
c = 24.6017 (8) Å T = 295 K
β = 98.234 (2)° Block, colourless
V = 1599.62 (10) Å3 0.30 × 0.25 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 27.4°, θmin = 2.4°
ω–scans h = −10→11
16796 measured reflections k = −9→9
3606 independent reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.223P] where P = (Fo2 + 2Fc2)/3
3606 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22956 (16) 0.74379 (19) 0.22503 (6) 0.0473 (3)
C2 0.20315 (19) 0.8782 (2) 0.25995 (6) 0.0580 (4)
H2 0.2518 0.8771 0.2963 0.070*
C3 0.1058 (2) 1.0123 (2) 0.24110 (8) 0.0655 (5)
H3 0.0882 1.1022 0.2647 0.079*
C4 0.0333 (2) 1.0157 (2) 0.18741 (8) 0.0661 (5)
H4 −0.0330 1.1073 0.1747 0.079*
C5 0.05999 (17) 0.8817 (2) 0.15272 (7) 0.0559 (4)
H5 0.0123 0.8851 0.1163 0.067*
C6 0.15635 (15) 0.74186 (18) 0.17079 (5) 0.0436 (3)
C7 0.19011 (15) 0.60029 (18) 0.13206 (5) 0.0437 (3)
H7 0.2107 0.6513 0.0973 0.052*
C8 0.33071 (16) 0.48679 (18) 0.15615 (5) 0.0442 (3)
C9 0.32444 (19) 0.4600 (2) 0.21731 (6) 0.0540 (4)
H9A 0.2260 0.4026 0.2219 0.065*
H9B 0.4110 0.3849 0.2326 0.065*
C10 0.29378 (17) 0.3102 (2) 0.12512 (6) 0.0527 (4)
H10 0.2751 0.2212 0.1519 0.063*
C11 −0.07140 (19) 0.5205 (3) 0.08314 (8) 0.0816 (6)
H11A −0.0377 0.5647 0.0502 0.122*
H11B −0.1272 0.6096 0.0998 0.122*
H11C −0.1402 0.4227 0.0743 0.122*
C12 0.41716 (17) 0.24478 (18) 0.09254 (6) 0.0474 (3)
C13 0.43199 (19) 0.3076 (2) 0.04099 (6) 0.0570 (4)
H13 0.3610 0.3903 0.0246 0.068*
C14 0.5515 (2) 0.2484 (2) 0.01362 (6) 0.0594 (4)
H14 0.5591 0.2913 −0.0212 0.071*
C15 0.65985 (18) 0.1273 (2) 0.03664 (6) 0.0540 (4)
C16 0.64196 (19) 0.0627 (2) 0.08744 (7) 0.0602 (4)
H16 0.7124 −0.0210 0.1036 0.072*
C17 0.52204 (19) 0.1192 (2) 0.11499 (6) 0.0564 (4)
H17 0.5117 0.0722 0.1491 0.068*
C18 0.7938 (2) 0.0675 (3) 0.00727 (8) 0.0795 (6)
H18A 0.7638 0.0806 −0.0316 0.119*
H18B 0.8165 −0.0525 0.0157 0.119*
H18C 0.8862 0.1362 0.0191 0.119*
C19 0.47926 (17) 0.57010 (19) 0.14768 (6) 0.0469 (3)
N1 0.06659 (14) 0.46627 (17) 0.12132 (5) 0.0582 (4)
N2 0.59187 (16) 0.64169 (19) 0.14207 (6) 0.0678 (4)
O1 0.33511 (13) 0.61910 (14) 0.24647 (4) 0.0597 (3)
O2 0.14917 (12) 0.34224 (16) 0.08996 (5) 0.0686 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0414 (8) 0.0510 (8) 0.0507 (8) −0.0054 (6) 0.0103 (6) −0.0034 (6)
C2 0.0541 (9) 0.0643 (10) 0.0576 (9) −0.0120 (8) 0.0154 (7) −0.0173 (8)
C3 0.0567 (10) 0.0600 (10) 0.0846 (12) −0.0077 (8) 0.0269 (9) −0.0238 (9)
C4 0.0535 (9) 0.0552 (10) 0.0924 (13) 0.0099 (8) 0.0198 (9) −0.0044 (9)
C5 0.0453 (8) 0.0591 (10) 0.0635 (9) 0.0059 (7) 0.0086 (7) −0.0008 (7)
C6 0.0345 (7) 0.0484 (8) 0.0494 (7) −0.0031 (6) 0.0114 (5) −0.0031 (6)
C7 0.0363 (7) 0.0498 (8) 0.0451 (7) 0.0003 (6) 0.0063 (5) −0.0022 (6)
C8 0.0403 (7) 0.0442 (8) 0.0485 (7) 0.0010 (6) 0.0077 (6) −0.0006 (6)
C9 0.0603 (9) 0.0506 (9) 0.0511 (8) 0.0042 (7) 0.0078 (7) 0.0046 (7)
C10 0.0504 (9) 0.0462 (8) 0.0630 (9) −0.0033 (7) 0.0137 (7) −0.0057 (7)
C11 0.0406 (9) 0.1028 (15) 0.0972 (13) 0.0017 (9) −0.0049 (8) −0.0387 (12)
C12 0.0488 (8) 0.0407 (8) 0.0528 (8) −0.0017 (6) 0.0076 (6) −0.0052 (6)
C13 0.0638 (10) 0.0455 (8) 0.0614 (9) 0.0078 (7) 0.0084 (7) 0.0074 (7)
C14 0.0741 (11) 0.0536 (9) 0.0529 (8) −0.0037 (8) 0.0173 (8) 0.0015 (7)
C15 0.0541 (9) 0.0487 (9) 0.0603 (9) −0.0047 (7) 0.0122 (7) −0.0128 (7)
C16 0.0563 (9) 0.0580 (10) 0.0644 (10) 0.0141 (8) 0.0026 (7) −0.0008 (8)
C17 0.0637 (10) 0.0576 (9) 0.0474 (8) 0.0064 (8) 0.0057 (7) 0.0036 (7)
C18 0.0744 (12) 0.0772 (13) 0.0927 (13) −0.0026 (10) 0.0327 (10) −0.0224 (10)
C19 0.0395 (8) 0.0453 (8) 0.0549 (8) 0.0063 (7) 0.0038 (6) 0.0034 (6)
N1 0.0395 (7) 0.0621 (8) 0.0736 (8) −0.0039 (6) 0.0095 (6) −0.0215 (7)
N2 0.0468 (8) 0.0640 (9) 0.0923 (10) −0.0020 (7) 0.0093 (7) 0.0111 (8)
O1 0.0649 (7) 0.0651 (7) 0.0462 (5) 0.0059 (6) −0.0022 (5) −0.0047 (5)
O2 0.0461 (6) 0.0732 (8) 0.0851 (8) −0.0001 (6) 0.0041 (5) −0.0351 (6)

Geometric parameters (Å, °)

C1—O1 1.3692 (18) C10—C12 1.4989 (19)
C1—C2 1.384 (2) C10—H10 0.9800
C1—C6 1.3901 (19) C11—N1 1.458 (2)
C2—C3 1.364 (2) C11—H11A 0.9600
C2—H2 0.9300 C11—H11B 0.9600
C3—C4 1.376 (2) C11—H11C 0.9600
C3—H3 0.9300 C12—C17 1.378 (2)
C4—C5 1.378 (2) C12—C13 1.380 (2)
C4—H4 0.9300 C13—C14 1.378 (2)
C5—C6 1.389 (2) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.377 (2)
C6—C7 1.5025 (19) C14—H14 0.9300
C7—N1 1.4716 (18) C15—C16 1.374 (2)
C7—C8 1.5332 (19) C15—C18 1.509 (2)
C7—H7 0.9800 C16—C17 1.376 (2)
C8—C19 1.462 (2) C16—H16 0.9300
C8—C9 1.5272 (19) C17—H17 0.9300
C8—C10 1.569 (2) C18—H18A 0.9600
C9—O1 1.4155 (18) C18—H18B 0.9600
C9—H9A 0.9700 C18—H18C 0.9600
C9—H9B 0.9700 C19—N2 1.1333 (18)
C10—O2 1.4235 (18) N1—O2 1.4694 (16)
O1—C1—C2 116.22 (13) O2—C10—H10 108.6
O1—C1—C6 122.86 (13) C12—C10—H10 108.6
C2—C1—C6 120.87 (14) C8—C10—H10 108.6
C3—C2—C1 120.02 (15) N1—C11—H11A 109.5
C3—C2—H2 120.0 N1—C11—H11B 109.5
C1—C2—H2 120.0 H11A—C11—H11B 109.5
C2—C3—C4 120.58 (15) N1—C11—H11C 109.5
C2—C3—H3 119.7 H11A—C11—H11C 109.5
C4—C3—H3 119.7 H11B—C11—H11C 109.5
C3—C4—C5 119.26 (16) C17—C12—C13 118.32 (14)
C3—C4—H4 120.4 C17—C12—C10 119.16 (13)
C5—C4—H4 120.4 C13—C12—C10 122.51 (14)
C4—C5—C6 121.65 (15) C14—C13—C12 120.32 (15)
C4—C5—H5 119.2 C14—C13—H13 119.8
C6—C5—H5 119.2 C12—C13—H13 119.8
C5—C6—C1 117.59 (13) C15—C14—C13 121.60 (14)
C5—C6—C7 121.19 (12) C15—C14—H14 119.2
C1—C6—C7 121.06 (13) C13—C14—H14 119.2
N1—C7—C6 115.14 (11) C16—C15—C14 117.62 (14)
N1—C7—C8 99.83 (11) C16—C15—C18 121.05 (16)
C6—C7—C8 112.25 (11) C14—C15—C18 121.33 (16)
N1—C7—H7 109.7 C15—C16—C17 121.40 (15)
C6—C7—H7 109.7 C15—C16—H16 119.3
C8—C7—H7 109.7 C17—C16—H16 119.3
C19—C8—C9 110.68 (12) C16—C17—C12 120.70 (14)
C19—C8—C7 109.97 (11) C16—C17—H17 119.7
C9—C8—C7 108.78 (11) C12—C17—H17 119.7
C19—C8—C10 115.37 (12) C15—C18—H18A 109.5
C9—C8—C10 109.25 (12) C15—C18—H18B 109.5
C7—C8—C10 102.36 (11) H18A—C18—H18B 109.5
O1—C9—C8 111.94 (12) C15—C18—H18C 109.5
O1—C9—H9A 109.2 H18A—C18—H18C 109.5
C8—C9—H9A 109.2 H18B—C18—H18C 109.5
O1—C9—H9B 109.2 N2—C19—C8 176.76 (16)
C8—C9—H9B 109.2 C11—N1—O2 104.57 (12)
H9A—C9—H9B 107.9 C11—N1—C7 114.00 (14)
O2—C10—C12 110.34 (12) O2—N1—C7 99.48 (10)
O2—C10—C8 104.01 (11) C1—O1—C9 114.86 (11)
C12—C10—C8 116.36 (12) C10—O2—N1 103.46 (10)
O1—C1—C2—C3 176.76 (13) C9—C8—C10—C12 −123.06 (14)
C6—C1—C2—C3 −0.8 (2) C7—C8—C10—C12 121.75 (13)
C1—C2—C3—C4 −0.1 (2) O2—C10—C12—C17 −142.83 (14)
C2—C3—C4—C5 0.0 (2) C8—C10—C12—C17 99.01 (16)
C3—C4—C5—C6 1.0 (2) O2—C10—C12—C13 38.3 (2)
C4—C5—C6—C1 −1.9 (2) C8—C10—C12—C13 −79.82 (18)
C4—C5—C6—C7 −177.41 (14) C17—C12—C13—C14 −1.5 (2)
O1—C1—C6—C5 −175.61 (13) C10—C12—C13—C14 177.30 (14)
C2—C1—C6—C5 1.8 (2) C12—C13—C14—C15 −0.6 (3)
O1—C1—C6—C7 −0.1 (2) C13—C14—C15—C16 2.0 (2)
C2—C1—C6—C7 177.32 (13) C13—C14—C15—C18 −177.88 (15)
C5—C6—C7—N1 −81.82 (17) C14—C15—C16—C17 −1.3 (2)
C1—C6—C7—N1 102.86 (15) C18—C15—C16—C17 178.64 (16)
C5—C6—C7—C8 164.86 (13) C15—C16—C17—C12 −0.9 (3)
C1—C6—C7—C8 −10.46 (18) C13—C12—C17—C16 2.3 (2)
N1—C7—C8—C19 154.67 (11) C10—C12—C17—C16 −176.59 (14)
C6—C7—C8—C19 −82.87 (14) C6—C7—N1—C11 77.26 (16)
N1—C7—C8—C9 −83.97 (13) C8—C7—N1—C11 −162.35 (12)
C6—C7—C8—C9 38.50 (15) C6—C7—N1—O2 −172.04 (11)
N1—C7—C8—C10 31.56 (12) C8—C7—N1—O2 −51.65 (12)
C6—C7—C8—C10 154.02 (11) C2—C1—O1—C9 161.37 (13)
C19—C8—C9—O1 60.05 (16) C6—C1—O1—C9 −21.07 (19)
C7—C8—C9—O1 −60.88 (15) C8—C9—O1—C1 52.08 (17)
C10—C8—C9—O1 −171.86 (12) C12—C10—O2—N1 −157.88 (11)
C19—C8—C10—O2 −119.20 (13) C8—C10—O2—N1 −32.38 (14)
C9—C8—C10—O2 115.38 (13) C11—N1—O2—C10 172.10 (14)
C7—C8—C10—O2 0.19 (14) C7—N1—O2—C10 54.09 (13)
C19—C8—C10—C12 2.36 (18)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C10—H10···C4i 0.98 2.84 3.662 (2) 143
C3—H3···Cg3ii 0.93 2.99 3.8075 (18) 147

Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2276).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, U.S.A.
  4. Carlson, J. (1993). Neur. Transm., 94, 11–19. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942. [DOI] [PMC free article] [PubMed]
  8. Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.
  9. Kozikowski, A. P. (1984). Acc. Chem. Res., 17, 410–416.
  10. Raju, K. V. N., Krishnaiah, M., Kumar, N. J. & Rao, S. N. (2002). Acta Cryst. A58, C128.
  11. Rybarczyk-Pirek, A. J., Małecka, M., Grabowski, S. J. & Nawrot-Modranka, J. (2002). Acta Cryst. C58, o405–o406. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021829/rk2276sup1.cif

e-67-o1695-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021829/rk2276Isup2.hkl

e-67-o1695-Isup2.hkl (173.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021829/rk2276Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES