Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):m889. doi: 10.1107/S1600536811020782

1-Chloro­methyl-1,4-diazo­niabicyclo[2.2.2]octane tetra­chloridocuprate(II)

Tao Rong a,*
PMCID: PMC3152011  PMID: 21836880

Abstract

In the crystal structure of the title compound, (C7H15ClN2)[CuCl4], a weak inter­molecular N—H⋯Cl hydrogen bond is observed between the organic dication and the tetrahedral [CuCl4]2− anion. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°.

Related literature

For related 1,4-diaza­bicyclo­[2.2.2]octane tetra­chlorido­cuprate(II) and tetra­chloridocobaltate(II) structures, and related references therein, see: Sun & Qu (2005); Qu & Sun (2005). For phase transitions of ferroelectric materials, see: Zhang et al. (2008); Ye et al. (2009).graphic file with name e-67-0m889-scheme1.jpg

Experimental

Crystal data

  • (C7H15ClN2)[CuCl4]

  • M r = 368.00

  • Orthorhombic, Inline graphic

  • a = 9.878 (4) Å

  • b = 11.167 (4) Å

  • c = 12.201 (4) Å

  • V = 1345.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.465, T max = 0.596

  • 6091 measured reflections

  • 3072 independent reflections

  • 2865 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.055

  • S = 1.01

  • 3072 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), with 1298 Friedel pairs

  • Flack parameter: 0.006 (11)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020782/si2354sup1.cif

e-67-0m889-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020782/si2354Isup2.hkl

e-67-0m889-Isup2.hkl (150.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cl2—Cu1 2.2537 (8)
Cl3—Cu1 2.2539 (9)
Cl4—Cu1 2.2559 (9)
Cl5—Cu1 2.2088 (11)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl2 0.91 2.60 3.270 (2) 131
N2—H2C⋯Cl3 0.91 2.54 3.252 (2) 136

Acknowledgments

The author is grateful to the Starter Fund of Southeast University, Nanjing, China.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1), consists of protonated 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dications and [CuCl4]2- anions. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°. In the structure of 1,4-dimethyl-1,4-diazonia[2.2.2]octane tetrachloridocuprate(II), of two independent dications one is almost undistorted with torsion angles between 0.6 (6) and 0.9 (5)°, whereas the other dication is distorted exhibiting torsion angles in the range of 5.5 (5) and 7.9 (5)° (Sun & Qu, 2005). In the isotypic cobalt(II) structure (Qu & Sun, 2005), two independent dications are slightly distorted with torsion angles range between 3.0 (4) and 8.7 (4)°. The [CuCl4]2- anion in (I) possesses typical Cu—Cl bonds and its lengths range from 2.209 (1) to 2.2559 (9) Å (Table 1), while the Cl—Cu—Cl angles range from 95.98 (4) to 132.85 (3)°. The bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2) between the organic dications and the [CuCl4]2- anions contribute to the stability of crystal packing (Fig. 2).

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance.The title compound was studied as part of our work to obtain potential ferroelectric phase transition materials. Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric (Zhang et al., 2008; Ye et al., 2009).

Experimental

1, 4-diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was added in dichloromethane (20 ml) and the mixture was refluxed for 8 h. On standing for about 16 h at room temperature, the white precipitate of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride was obtained.

The title compound was synthesized by adding a solution of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride (1.97 g, 10 mmol) in HCl (37%, 20 ml) to a solution of CuCl2 (8 mmol) in 20 ml H2O. After a few weeks, brown hygroscopic block crystals of the title compound were obtained on slow evaporation of the solvent.

Refinement

Positional parameters of all H atoms bonded to C and N atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with respective C—H and N—H distances of 0.97 Å and 0.91 Å and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of a packing section of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

(C7H15ClN2)[CuCl4] F(000) = 740
Mr = 368.00 Dx = 1.816 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4288 reflections
a = 9.878 (4) Å θ = 2.5–27.5°
b = 11.167 (4) Å µ = 2.59 mm1
c = 12.201 (4) Å T = 293 K
V = 1345.9 (8) Å3 Block, brown
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Rigaku Mercury2 diffractometer 3072 independent reflections
Radiation source: fine-focus sealed tube 2865 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 2.5°
CCD profile fitting scans h = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −14→14
Tmin = 0.465, Tmax = 0.596 l = −15→15
6091 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3072 reflections Δρmax = 0.39 e Å3
136 parameters Δρmin = −0.36 e Å3
0 restraints Absolute structure: Flack (1983), with 1298 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.006 (11)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4179 (3) 1.0325 (2) 0.3874 (2) 0.0310 (6)
H1A 0.4300 0.9982 0.3150 0.037*
H1B 0.3385 1.0836 0.3859 0.037*
C2 0.3989 (3) 0.9330 (2) 0.4717 (2) 0.0267 (6)
H2A 0.3256 0.9533 0.5212 0.032*
H2B 0.3760 0.8586 0.4350 0.032*
C3 0.6657 (3) 1.0334 (2) 0.4017 (2) 0.0303 (6)
H3A 0.7419 1.0735 0.4359 0.036*
H3B 0.6844 1.0253 0.3240 0.036*
C4 0.6448 (3) 0.9099 (2) 0.4533 (2) 0.0286 (6)
H4A 0.6235 0.8517 0.3968 0.034*
H4B 0.7269 0.8845 0.4902 0.034*
C5 0.5303 (3) 1.1391 (2) 0.5373 (2) 0.0288 (6)
H5A 0.4426 1.1748 0.5519 0.035*
H5B 0.5998 1.1973 0.5551 0.035*
C6 0.5486 (3) 1.0273 (2) 0.6064 (2) 0.0282 (6)
H6A 0.6388 1.0263 0.6380 0.034*
H6B 0.4834 1.0269 0.6659 0.034*
C7 0.5329 (3) 0.8043 (2) 0.6006 (2) 0.0336 (6)
H7A 0.6137 0.8040 0.6457 0.040*
H7B 0.5382 0.7367 0.5510 0.040*
Cl1 0.39073 (9) 0.78795 (7) 0.68465 (6) 0.0493 (2)
N1 0.5285 (2) 0.91796 (17) 0.53523 (16) 0.0212 (4)
N2 0.5402 (2) 1.10429 (17) 0.41845 (17) 0.0255 (4)
H2C 0.5438 1.1716 0.3765 0.031*
Cl2 0.36056 (6) 1.33367 (5) 0.33718 (6) 0.03068 (15)
Cl3 0.69739 (6) 1.35292 (6) 0.36324 (6) 0.03568 (16)
Cl4 0.42453 (7) 1.63249 (5) 0.36275 (5) 0.03390 (16)
Cl5 0.55993 (8) 1.49699 (6) 0.59012 (6) 0.04221 (18)
Cu1 0.51283 (3) 1.45593 (3) 0.41718 (3) 0.02648 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0292 (13) 0.0314 (14) 0.0325 (15) −0.0047 (12) −0.0084 (11) 0.0029 (11)
C2 0.0233 (13) 0.0228 (13) 0.0339 (14) −0.0040 (10) −0.0025 (11) −0.0032 (11)
C3 0.0237 (12) 0.0379 (14) 0.0294 (14) 0.0008 (12) 0.0058 (11) 0.0033 (12)
C4 0.0255 (13) 0.0314 (13) 0.0289 (14) 0.0070 (12) 0.0048 (11) 0.0014 (11)
C5 0.0342 (15) 0.0215 (12) 0.0305 (13) −0.0036 (12) 0.0031 (12) −0.0053 (10)
C6 0.0338 (14) 0.0260 (13) 0.0248 (14) −0.0091 (11) 0.0016 (10) −0.0047 (10)
C7 0.0426 (16) 0.0270 (13) 0.0312 (15) −0.0047 (12) −0.0017 (13) 0.0070 (11)
Cl1 0.0659 (6) 0.0429 (4) 0.0392 (4) −0.0177 (4) 0.0166 (4) 0.0024 (3)
N1 0.0226 (10) 0.0194 (9) 0.0217 (10) −0.0025 (8) −0.0004 (9) −0.0012 (8)
N2 0.0260 (10) 0.0214 (10) 0.0292 (11) −0.0023 (9) −0.0003 (10) 0.0027 (9)
Cl2 0.0259 (3) 0.0249 (3) 0.0412 (4) −0.0006 (3) −0.0059 (3) −0.0022 (3)
Cl3 0.0241 (3) 0.0314 (3) 0.0516 (4) 0.0000 (3) −0.0010 (3) −0.0042 (3)
Cl4 0.0505 (4) 0.0211 (3) 0.0302 (3) 0.0052 (3) −0.0030 (3) −0.0007 (3)
Cl5 0.0568 (5) 0.0438 (4) 0.0260 (3) 0.0048 (4) −0.0066 (3) −0.0006 (3)
Cu1 0.02908 (17) 0.02223 (14) 0.02814 (16) 0.00119 (14) −0.00354 (14) −0.00133 (13)

Geometric parameters (Å, °)

C1—N2 1.499 (3) C5—C6 1.518 (3)
C1—C2 1.526 (3) C5—H5A 0.9700
C1—H1A 0.9700 C5—H5B 0.9700
C1—H1B 0.9700 C6—N1 1.511 (3)
C2—N1 1.506 (3) C6—H6A 0.9700
C2—H2A 0.9700 C6—H6B 0.9700
C2—H2B 0.9700 C7—N1 1.499 (3)
C3—N2 1.484 (3) C7—Cl1 1.748 (3)
C3—C4 1.530 (3) C7—H7A 0.9700
C3—H3A 0.9700 C7—H7B 0.9700
C3—H3B 0.9700 N2—H2C 0.9100
C4—N1 1.526 (3) Cl2—Cu1 2.2537 (8)
C4—H4A 0.9700 Cl3—Cu1 2.2539 (9)
C4—H4B 0.9700 Cl4—Cu1 2.2559 (9)
C5—N2 1.504 (3) Cl5—Cu1 2.2088 (11)
N2—C1—C2 108.56 (19) N1—C6—C5 109.22 (19)
N2—C1—H1A 110.0 N1—C6—H6A 109.8
C2—C1—H1A 110.0 C5—C6—H6A 109.8
N2—C1—H1B 110.0 N1—C6—H6B 109.8
C2—C1—H1B 110.0 C5—C6—H6B 109.8
H1A—C1—H1B 108.4 H6A—C6—H6B 108.3
N1—C2—C1 108.86 (19) N1—C7—Cl1 112.18 (19)
N1—C2—H2A 109.9 N1—C7—H7A 109.2
C1—C2—H2A 109.9 Cl1—C7—H7A 109.2
N1—C2—H2B 109.9 N1—C7—H7B 109.2
C1—C2—H2B 109.9 Cl1—C7—H7B 109.2
H2A—C2—H2B 108.3 H7A—C7—H7B 107.9
N2—C3—C4 108.13 (19) C7—N1—C2 113.10 (19)
N2—C3—H3A 110.1 C7—N1—C6 111.95 (19)
C4—C3—H3A 110.1 C2—N1—C6 108.52 (19)
N2—C3—H3B 110.1 C7—N1—C4 106.10 (19)
C4—C3—H3B 110.1 C2—N1—C4 108.03 (19)
H3A—C3—H3B 108.4 C6—N1—C4 108.98 (18)
N1—C4—C3 108.55 (19) C3—N2—C1 110.7 (2)
N1—C4—H4A 110.0 C3—N2—C5 109.0 (2)
C3—C4—H4A 110.0 C1—N2—C5 109.21 (19)
N1—C4—H4B 110.0 C3—N2—H2C 109.3
C3—C4—H4B 110.0 C1—N2—H2C 109.3
H4A—C4—H4B 108.4 C5—N2—H2C 109.3
N2—C5—C6 108.37 (19) Cl5—Cu1—Cl2 132.85 (3)
N2—C5—H5A 110.0 Cl5—Cu1—Cl3 102.39 (3)
C6—C5—H5A 110.0 Cl2—Cu1—Cl3 95.98 (4)
N2—C5—H5B 110.0 Cl5—Cu1—Cl4 100.44 (3)
C6—C5—H5B 110.0 Cl2—Cu1—Cl4 98.27 (4)
H5A—C5—H5B 108.4 Cl3—Cu1—Cl4 132.29 (3)
N2—C1—C2—N1 −16.8 (3) C5—C6—N1—C4 68.1 (2)
N2—C3—C4—N1 −19.5 (3) C3—C4—N1—C7 −167.6 (2)
N2—C5—C6—N1 −16.8 (3) C3—C4—N1—C2 70.9 (2)
Cl1—C7—N1—C2 −52.6 (2) C3—C4—N1—C6 −46.9 (3)
Cl1—C7—N1—C6 70.4 (2) C4—C3—N2—C1 −47.8 (3)
Cl1—C7—N1—C4 −170.83 (17) C4—C3—N2—C5 72.3 (2)
C1—C2—N1—C7 −166.0 (2) C2—C1—N2—C3 69.9 (3)
C1—C2—N1—C6 69.1 (2) C2—C1—N2—C5 −50.1 (3)
C1—C2—N1—C4 −48.9 (2) C6—C5—N2—C3 −51.1 (3)
C5—C6—N1—C7 −174.9 (2) C6—C5—N2—C1 70.0 (3)
C5—C6—N1—C2 −49.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2C···Cl2 0.91 2.60 3.270 (2) 131.
N2—H2C···Cl3 0.91 2.54 3.252 (2) 136.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2354).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362.
  7. Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. [DOI] [PubMed]
  8. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020782/si2354sup1.cif

e-67-0m889-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020782/si2354Isup2.hkl

e-67-0m889-Isup2.hkl (150.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES