Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 4;67(Pt 7):m839–m840. doi: 10.1107/S1600536811020101

A new MoVI Schiff base complex: methanol[N′-(3-meth­oxy-2-oxidobenzyl­idene)benzohydrazidato]dioxido­molybdenum(VI)

Iran Sheikhshoaie a,*, Vratislav Langer b, Seyed Ali Yasrebi a
PMCID: PMC3152014  PMID: 21836845

Abstract

In the title benzil­idene Schiff base molybdenum(VI) complex, [Mo(C15H12N2O3)O2(CH3OH)], the MoVI ion is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate N′-(3-meth­oxy-2-oxidobenzyl­idene)benzo­hydrazidate (L) Schiff base ligand. The methanol O atom completes the distorted octa­hedral configuration of the MoVI atom. Strong O—H⋯N hydrogen bonds form a C(5) chain around a 21 screw axis. Weak C—H—O hydrogen bonds are also present.

Related literature

For general background, see: Alizadeh et al. (1999); Ambroziak et al. (2004); Archer & Wang (1990); Bagherzadeh & Amini (2009); Bagherzadeh et al. (2008); Bhatia et al. (1981); Bindlish et al. (1978); Blake et al. (1995); Chang et al. (1998); Costamagna et al. (1992); Dhar & Taploo (1982); Hatefi et al. (2009); Holm (1990); Jalali-Heravi et al. (1999); Johnson et al. (1996); Maurya et al. (1997); Sheikhshoaie & Fabian (2009); Yamada (1999). For details of the synthesis, see: Perrin et al. (1990). For related structures, see: Dinda et al. (2006); Glowiak et al. (2003); Liimatainen et al. (2000); Monadi et al. (2009); Niaz et al. (2010); Pramaniky et al. (2007); Rao et al. (1999); Rezaeifard et al. (2010); Saeednia et al. (2009); Sheikhshoaie et al. (2009); Vrdoljak et al. (2010).graphic file with name e-67-0m839-scheme1.jpg

Experimental

Crystal data

  • [Mo(C15H12N2O3)O2(CH4O)]

  • M r = 428.25

  • Monoclinic, Inline graphic

  • a = 29.400 (13) Å

  • b = 8.553 (4) Å

  • c = 14.391 (6) Å

  • β = 112.993 (8)°

  • V = 3331 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.58 × 0.54 × 0.46 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.368, T max = 0.703

  • 27788 measured reflections

  • 5867 independent reflections

  • 4401 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.104

  • S = 1.01

  • 5867 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.80 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020101/dn2692sup1.cif

e-67-0m839-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020101/dn2692Isup2.hkl

e-67-0m839-Isup2.hkl (287.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mo1—O1 2.0281 (19)
Mo1—O2 1.9391 (17)
Mo1—O4 1.7096 (18)
Mo1—O5 1.7093 (19)
Mo1—N1 2.248 (2)
Mo1—O1M 2.3374 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1M—H1M⋯N2i 0.84 1.87 2.700 (3) 173
C1M—H1BM⋯O1ii 0.98 2.58 3.402 (3) 141
C6—H6⋯O4iii 0.95 2.53 3.450 (3) 162
C11—H11⋯O1 0.95 2.44 2.767 (3) 100
C15—H15⋯O1Mii 0.95 2.54 3.427 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Shahid Bahonar University of Kerman.

supplementary crystallographic information

Comment

The condensation products of primary amines and aldehydes or ketones (RCH=NR'), where R and R' represent alkyl and /or aryl constituents), are called Schiff bases (Dhar & Taploo, 1982); they play an important role in inorganic chemistry (Blake et al., 1995; Johnson et al.,1996; Alizadeh et al., 1999) as they easily form stable complexes with most transition metal ions. Transition metal compounds containing the Schiff base ligands have been of interest for many years (Yamada, 1999; Chang et al., 1998; Archer & Wang, 1990; Sheikhshoaie & Fabian, 2009; Jalali-Heravi et al., 1999). Many complexes play an important role in the developing of coordination chemistry related to catalytic (Holm, 1990; Rao et al., 1999; Bagherzadeh et al., 2008; Ambroziak et al., 2004; Bagherzadeh & Amini, 2009; Hatefi et al., 2009) and enzymatic reactions (Bindlish et al., 1978; Bhatia et al., 1981; Costamagna et al., 1992). High valent metal oxo species have demonstrated the ability to catalyze the oxidation of a variety of organic substrates, via homogeneous as well as heterogeneous routes (Holm, 1990; Maurya et al., 1997). In particular, the Mo-catalyzed alkene to epoxide conversion has received most attention. In the course of our studies on transition metal Schiff base complexes (Sheikhshoaie et al., 2009; Monadi et al., 2009), we have synthesized a dioxo molybdenium complex with a tridentate ligand (L) and the crystal structure of the title complex (I) is presented here.

The molecular structure of (I) is shown in Fig. 1. and the selected bond distances and angles are given in Table 1. The calculated bond valence by PLATON (version 91110: Spek, 2009) for Mo atom is 5.89, i.e. it exhibits the oxidation state +VI. Mo atom is surrounded by two O atoms and one N atom of the tridentate Schiff base ligand 3-methoxysalicylidenbenzoyl hydrazine in a distorted octahedral configuration. The Mo—O distances of the oxo ligands (O4 and O5) are significantly shorter [average 1.7094 (18) Å] than the corresponding distances to the O atoms of the tridentate ligands (O1 and O2) [average 1.98 (6) Å]. The Mo—N distance is longer [2.248 (2) Å] and the distance to methanol O atom is longest.

The aromatic ring C1/C2/C3/C4/C5/C6 is slightly distorted (χ2 = 56.6), while the phenyl ring C10/C11/C12/C13/C14/C15 is planar (χ2 = 4.7); the dihedral angle between them is 23.09 (12)o.

There are strong hydrogen bonds present between the hydroxy group of methanol and N2i atom in an adjacent complex [symmetry code: (i):-x + 1/2,y + 1/2,-z + 1/2] forming thus a C(5) chain around 21 screw axis, see Fig.2. There are also weak hydrogen bonds of the type in the C—H—O hydrogen bonds present, see Table 2. Fig. 3 shows the packing of the complexes in the unit cell, but there are no π-π interactions present.

Comparison with other similar structures is presented in Table 3. In all complexes molybdenum atom is coordinated by two oxo oxygen atoms, one nitrogen atom of C=N group and one oxygen atom from solvent (methanol or ethanol). In all these complexes, the longest bond from the solvent coordination indicates the most labile site available for substitution. In addition, in all the investigated complexes the bonds between molybdenium atom and nitrogen atom of imine group (C=N) are long (average: 2.26 (2) Å). Two oxo oxygen atoms are almost in cis position towards each other in all the cases [the average of the O=Mo=O angles: 106.1 (5)°]. The angles of N—Mo=O in the complexes indicate that one of the oxo oxygen atoms is in cis and the other one is in trans position toward nitrogen atom of imine group. The coordination geometry around Mo atoms is highly distorted octahedral in [MoO2(L) (solvent)] complexes, where (L) is a tridentate ligand containing an imine group and MeOH or EtOH as a solvent. Table 4 provides a comparison of important frequencies in the IR spectra of (I) and some dioxo-molybdenum(VI) complexes.

Experimental

All reagents were used assupplied by Fluka and Merck without further purification. Solvents used for the reaction were purified and dried by conventional methods (Perrin et al., 1990).

NMR spectra were obtained on a BRUKER AVANCE DRX500 (500 MHz) spectrometer. Proton chemical shifts δ are reported in p.p.m. relative to an internal standard of Me4Si. Elemental analyses were performed by using Heraeus CHN-O-RAPID elemental analyzer. IR spectra were recorded in KBr pellets using Shimadzu 435 spectrophotometer.

Synthesis of ligand (L): To a solution of 0.136 g(0.001 mol) benzohydrazide in 20 ml e thanol was added a solution of 0.152 g(0.001 mol) 3-methoxysalicylaldehyde in 10 ml e thanol, and refluxed for 5 h. The solvent was evaporated on a rotatory evaporator and the solid dissolved in 10 ml me thanol and filtered off. The filtrate was left overnight to give yellow crystals. Yield: 202 mg (75%). Anal. Calc. for C15H14N2O3: C, 66.66; H, 5.18; N, 10.37. Found: C, 66.79; H, 5.20; N, 10.39%. IR (KBr, cm-1) νmax 1652.9 (s, C=O), 1614 (m, C=N). 1H NMR: (d6-DMSO): δ 3.81 (s, 3H, methoxy group), δ 6.84–7.96 (m, 8H, ArH), δ 8.671 (s, 1H, –CH=N– group), δ 11.02 (s, 1H, OH group), δ 12.09 (s, 1H, NH group).

Synthesis of the title metal complex (I) [Mo O2(L)(CH3OH)]: The title dioxomolybdenum(VI) complex was prepared by mixing MoO2(acac)2 (acac=.acetylacetonate) with the ligand in a 1:1 molar ratio using 30 ml dry methanol as a solvent, followed by refluxing the solution for 4 h. Deeply orange crystals were collected by filtration and dried in the room temperature, yield: 83%. 1H NMR: δ 3.80 (s, 3H, metoxy group), δ 7.006–8.01 (m, 8 H, Ar H), δ 8.92 (s, 1H, –CH=N– group), δ 4.08–4.11 (s, 1H, OH methanol group); δ 3.16 (d, 3H CH3 in methanol). IR spectra are presented in Table 4 [frequencies ν(N—H) and ν(C=O) were not observed].

Refinement

Aromatic hydrogen atoms were refined isotropically with Uiso(H) = 1.2Ueq(C), and their positions were constrained to an ideal geometry using an appropriate riding model, (C—H = 0.95 Å). For methyl groups, O—C—H angles (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting positions based on the circular Fourier synthesis averaged using the local 3-fold axis with Uiso(H)= 1.5Ueq(C) and a constrained C—H distance of 0.98Å was applied. For hydroxy group, the O—H distance (0.84 Å) and C—O—H angle (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting position based on the maximum on the circular Fourier synthesis, Uiso(H)= 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The atom numbering scheme for (I), with atomic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen-pattern (dashed lines) in (I). C(5) chains are formed in the b-direction. Symmetry code: (i):-x + 1/2,y + 1/2,-z + 1/2.

Fig. 3.

Fig. 3.

Content of the unit cell for (I) in projection along the b axis.

Crystal data

[Mo(C15H12N2O3)O2(CH4O)] F(000) = 1728
Mr = 428.25 Dx = 1.708 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5066 reflections
a = 29.400 (13) Å θ = 2.5–32.3°
b = 8.553 (4) Å µ = 0.82 mm1
c = 14.391 (6) Å T = 173 K
β = 112.993 (8)° Block, orange
V = 3331 (2) Å3 0.58 × 0.54 × 0.46 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 5867 independent reflections
Radiation source: fine-focus sealed tube 4401 reflections with I > 2σ(I)
graphite Rint = 0.065
ω scans θmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −43→43
Tmin = 0.368, Tmax = 0.703 k = −12→12
27788 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 2.343P] where P = (Fo2 + 2Fc2)/3
5867 reflections (Δ/σ)max = 0.001
229 parameters Δρmax = 1.38 e Å3
0 restraints Δρmin = −1.80 e Å3

Special details

Experimental. Data were collected at 173 K using a Siemens SMART CCD diffractometer equipped with LT-2 A cooling device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 1 second per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 5066 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.169567 (7) 0.55438 (2) 0.093970 (13) 0.01640 (7)
O1 0.23804 (6) 0.54087 (18) 0.09191 (12) 0.0191 (3)
O2 0.11949 (6) 0.47242 (19) 0.13716 (13) 0.0209 (3)
O3 0.02944 (7) 0.4772 (2) 0.13247 (15) 0.0299 (4)
O4 0.17354 (6) 0.74754 (19) 0.12674 (13) 0.0244 (4)
O5 0.13736 (7) 0.5485 (2) −0.03385 (13) 0.0254 (4)
N1 0.19324 (7) 0.3025 (2) 0.11307 (13) 0.0163 (3)
N2 0.24201 (7) 0.2753 (2) 0.12187 (14) 0.0176 (4)
C1 0.11885 (8) 0.1902 (3) 0.12040 (16) 0.0185 (4)
C2 0.09645 (8) 0.3331 (3) 0.12693 (16) 0.0187 (4)
C3 0.04804 (9) 0.3332 (3) 0.12641 (17) 0.0226 (4)
C4 0.02337 (9) 0.1919 (3) 0.11911 (19) 0.0285 (5)
H4 −0.0093 0.1918 0.1170 0.034*
C5 0.04618 (10) 0.0501 (3) 0.1148 (2) 0.0282 (5)
H5 0.0291 −0.0456 0.1111 0.034*
C6 0.09347 (9) 0.0485 (3) 0.11585 (19) 0.0236 (5)
H6 0.1089 −0.0482 0.1135 0.028*
C7 0.16837 (8) 0.1801 (3) 0.12059 (16) 0.0189 (4)
H7 0.1832 0.0799 0.1264 0.023*
C8 −0.02257 (10) 0.4859 (4) 0.1098 (2) 0.0357 (6)
H8A −0.0409 0.4339 0.0452 0.054*
H8B −0.0327 0.5958 0.1053 0.054*
H8C −0.0297 0.4340 0.1633 0.054*
C9 0.26226 (8) 0.4068 (3) 0.11017 (16) 0.0171 (4)
C10 0.31418 (8) 0.4117 (3) 0.11898 (17) 0.0186 (4)
C11 0.33256 (9) 0.5503 (3) 0.09429 (18) 0.0212 (4)
H11 0.3115 0.6383 0.0706 0.025*
C12 0.38163 (10) 0.5592 (3) 0.1044 (2) 0.0265 (5)
H12 0.3938 0.6532 0.0874 0.032*
C13 0.41308 (10) 0.4306 (3) 0.1396 (2) 0.0279 (5)
H13 0.4466 0.4370 0.1470 0.033*
C14 0.39471 (9) 0.2927 (3) 0.1637 (2) 0.0277 (5)
H14 0.4158 0.2048 0.1873 0.033*
C15 0.34575 (9) 0.2829 (3) 0.15337 (18) 0.0228 (5)
H15 0.3336 0.1883 0.1697 0.027*
O1M 0.21855 (6) 0.51974 (19) 0.26524 (12) 0.0200 (3)
H1M 0.2288 0.6039 0.2964 0.030*
C1M 0.21418 (10) 0.4038 (3) 0.33394 (17) 0.0240 (5)
H1AM 0.2338 0.4359 0.4035 0.036*
H1BM 0.2263 0.3030 0.3206 0.036*
H1CM 0.1794 0.3935 0.3244 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01570 (10) 0.01803 (10) 0.01522 (9) 0.00265 (7) 0.00577 (7) 0.00205 (7)
O1 0.0194 (8) 0.0192 (8) 0.0205 (7) 0.0034 (6) 0.0098 (6) 0.0041 (6)
O2 0.0171 (8) 0.0222 (8) 0.0249 (8) 0.0010 (6) 0.0099 (7) −0.0004 (6)
O3 0.0191 (9) 0.0358 (10) 0.0363 (10) 0.0057 (7) 0.0126 (8) 0.0020 (8)
O4 0.0271 (9) 0.0205 (8) 0.0273 (9) 0.0058 (7) 0.0126 (7) 0.0045 (7)
O5 0.0224 (9) 0.0332 (10) 0.0186 (8) 0.0054 (7) 0.0058 (7) 0.0033 (7)
N1 0.0156 (9) 0.0190 (8) 0.0143 (8) 0.0003 (7) 0.0058 (7) −0.0004 (6)
N2 0.0152 (8) 0.0213 (9) 0.0167 (8) 0.0019 (7) 0.0066 (7) −0.0006 (7)
C1 0.0159 (10) 0.0238 (11) 0.0145 (9) −0.0014 (8) 0.0046 (8) −0.0003 (8)
C2 0.0159 (10) 0.0254 (11) 0.0138 (9) 0.0005 (8) 0.0047 (8) 0.0019 (8)
C3 0.0163 (10) 0.0308 (12) 0.0197 (10) 0.0008 (9) 0.0060 (8) 0.0007 (9)
C4 0.0172 (11) 0.0400 (14) 0.0291 (12) −0.0050 (10) 0.0099 (10) 0.0022 (11)
C5 0.0220 (12) 0.0321 (13) 0.0308 (13) −0.0080 (10) 0.0107 (10) −0.0001 (10)
C6 0.0212 (11) 0.0248 (11) 0.0234 (11) −0.0041 (9) 0.0074 (9) −0.0007 (9)
C7 0.0177 (10) 0.0217 (10) 0.0163 (9) 0.0008 (8) 0.0055 (8) 0.0000 (8)
C8 0.0194 (12) 0.0552 (18) 0.0344 (14) 0.0113 (12) 0.0125 (11) 0.0076 (13)
C9 0.0184 (10) 0.0207 (10) 0.0115 (8) 0.0011 (8) 0.0050 (8) −0.0002 (7)
C10 0.0181 (10) 0.0236 (11) 0.0154 (9) −0.0003 (8) 0.0079 (8) −0.0022 (8)
C11 0.0208 (11) 0.0233 (11) 0.0209 (10) 0.0015 (9) 0.0095 (9) 0.0031 (9)
C12 0.0248 (12) 0.0288 (12) 0.0285 (12) −0.0037 (10) 0.0133 (10) 0.0024 (10)
C13 0.0198 (11) 0.0356 (14) 0.0304 (13) −0.0017 (10) 0.0120 (10) −0.0005 (10)
C14 0.0214 (12) 0.0304 (13) 0.0335 (13) 0.0034 (10) 0.0130 (10) 0.0012 (10)
C15 0.0205 (11) 0.0228 (11) 0.0280 (12) 0.0021 (9) 0.0128 (9) 0.0023 (9)
O1M 0.0241 (8) 0.0205 (8) 0.0152 (7) −0.0036 (6) 0.0076 (6) −0.0017 (6)
C1M 0.0307 (13) 0.0247 (11) 0.0149 (10) 0.0001 (9) 0.0071 (9) 0.0027 (8)

Geometric parameters (Å, °)

Mo1—O1 2.0281 (19) C6—H6 0.9500
Mo1—O2 1.9391 (17) C7—H7 0.9500
Mo1—O4 1.7096 (18) C8—H8A 0.9800
Mo1—O5 1.7093 (19) C8—H8B 0.9800
Mo1—N1 2.248 (2) C8—H8C 0.9800
Mo1—O1M 2.3374 (18) C9—C10 1.482 (3)
O1—C9 1.321 (3) C10—C15 1.400 (3)
O2—C2 1.350 (3) C10—C11 1.404 (3)
O3—C3 1.364 (3) C11—C12 1.394 (4)
O3—C8 1.435 (3) C11—H11 0.9500
N1—C7 1.306 (3) C12—C13 1.399 (4)
N1—N2 1.409 (3) C12—H12 0.9500
N2—C9 1.313 (3) C13—C14 1.396 (4)
C1—C2 1.409 (3) C13—H13 0.9500
C1—C6 1.411 (3) C14—C15 1.391 (3)
C1—C7 1.457 (3) C14—H14 0.9500
C2—C3 1.420 (3) C15—H15 0.9500
C3—C4 1.392 (4) O1M—C1M 1.441 (3)
C4—C5 1.399 (4) O1M—H1M 0.8400
C4—H4 0.9500 C1M—H1AM 0.9800
C5—C6 1.384 (4) C1M—H1BM 0.9800
C5—H5 0.9500 C1M—H1CM 0.9800
O4—Mo1—O5 105.93 (8) N1—C7—H7 118.5
O4—Mo1—O2 103.86 (8) C1—C7—H7 118.5
O5—Mo1—O2 99.42 (9) O3—C8—H8A 109.5
O4—Mo1—O1 95.61 (7) O3—C8—H8B 109.5
O5—Mo1—O1 96.80 (8) H8A—C8—H8B 109.5
O2—Mo1—O1 150.03 (7) O3—C8—H8C 109.5
O4—Mo1—N1 155.24 (8) H8A—C8—H8C 109.5
O5—Mo1—N1 96.81 (7) H8B—C8—H8C 109.5
O2—Mo1—N1 81.49 (7) N2—C9—O1 122.2 (2)
O1—Mo1—N1 71.67 (6) N2—C9—C10 121.1 (2)
C9—O1—Mo1 120.49 (14) O1—C9—C10 116.7 (2)
C2—O2—Mo1 134.07 (14) C15—C10—C11 119.1 (2)
C3—O3—C8 116.8 (2) C15—C10—C9 121.7 (2)
C7—N1—N2 116.36 (18) C11—C10—C9 119.2 (2)
C7—N1—Mo1 128.46 (15) C12—C11—C10 120.3 (2)
N2—N1—Mo1 115.13 (13) C12—C11—H11 119.9
C9—N2—N1 110.11 (18) C10—C11—H11 119.9
C2—C1—C6 119.7 (2) C11—C12—C13 120.4 (2)
C2—C1—C7 122.9 (2) C11—C12—H12 119.8
C6—C1—C7 117.3 (2) C13—C12—H12 119.8
O2—C2—C1 123.0 (2) C14—C13—C12 119.3 (2)
O2—C2—C3 117.3 (2) C14—C13—H13 120.4
C1—C2—C3 119.6 (2) C12—C13—H13 120.4
O3—C3—C4 125.4 (2) C15—C14—C13 120.6 (2)
O3—C3—C2 115.2 (2) C15—C14—H14 119.7
C4—C3—C2 119.4 (2) C13—C14—H14 119.7
C3—C4—C5 120.8 (2) C14—C15—C10 120.4 (2)
C3—C4—H4 119.6 C14—C15—H15 119.8
C5—C4—H4 119.6 C10—C15—H15 119.8
C6—C5—C4 120.3 (2) C1M—O1M—H1M 109.5
C6—C5—H5 119.9 O1M—C1M—H1AM 109.5
C4—C5—H5 119.9 O1M—C1M—H1BM 109.5
C5—C6—C1 120.2 (2) H1AM—C1M—H1BM 109.5
C5—C6—H6 119.9 O1M—C1M—H1CM 109.5
C1—C6—H6 119.9 H1AM—C1M—H1CM 109.5
N1—C7—C1 123.0 (2) H1BM—C1M—H1CM 109.5
O4—Mo1—O1—C9 152.56 (16) O2—C2—C3—C4 −178.1 (2)
O5—Mo1—O1—C9 −100.61 (16) C1—C2—C3—C4 −0.2 (3)
O2—Mo1—O1—C9 21.8 (2) O3—C3—C4—C5 −179.1 (2)
N1—Mo1—O1—C9 −5.67 (15) C2—C3—C4—C5 1.6 (4)
O4—Mo1—O2—C2 174.04 (19) C3—C4—C5—C6 −1.2 (4)
O5—Mo1—O2—C2 64.9 (2) C4—C5—C6—C1 −0.6 (4)
O1—Mo1—O2—C2 −56.9 (3) C2—C1—C6—C5 1.9 (3)
N1—Mo1—O2—C2 −30.6 (2) C7—C1—C6—C5 −179.6 (2)
O4—Mo1—N1—C7 120.7 (2) N2—N1—C7—C1 175.46 (18)
O5—Mo1—N1—C7 −82.56 (19) Mo1—N1—C7—C1 −1.8 (3)
O2—Mo1—N1—C7 15.99 (19) C2—C1—C7—N1 −9.5 (3)
O1—Mo1—N1—C7 −177.5 (2) C6—C1—C7—N1 172.0 (2)
O4—Mo1—N1—N2 −56.6 (2) N1—N2—C9—O1 −0.6 (3)
O5—Mo1—N1—N2 100.14 (14) N1—N2—C9—C10 178.14 (18)
O2—Mo1—N1—N2 −161.31 (14) Mo1—O1—C9—N2 5.8 (3)
O1—Mo1—N1—N2 5.20 (13) Mo1—O1—C9—C10 −173.01 (14)
C7—N1—N2—C9 178.27 (19) N2—C9—C10—C15 −8.8 (3)
Mo1—N1—N2—C9 −4.1 (2) O1—C9—C10—C15 170.0 (2)
Mo1—O2—C2—C1 30.2 (3) N2—C9—C10—C11 172.5 (2)
Mo1—O2—C2—C3 −151.97 (17) O1—C9—C10—C11 −8.6 (3)
C6—C1—C2—O2 176.2 (2) C15—C10—C11—C12 −0.3 (3)
C7—C1—C2—O2 −2.2 (3) C9—C10—C11—C12 178.3 (2)
C6—C1—C2—C3 −1.5 (3) C10—C11—C12—C13 −0.2 (4)
C7—C1—C2—C3 −179.9 (2) C11—C12—C13—C14 0.5 (4)
C8—O3—C3—C4 −12.9 (4) C12—C13—C14—C15 −0.3 (4)
C8—O3—C3—C2 166.5 (2) C13—C14—C15—C10 −0.3 (4)
O2—C2—C3—O3 2.5 (3) C11—C10—C15—C14 0.5 (3)
C1—C2—C3—O3 −179.6 (2) C9—C10—C15—C14 −178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1M—H1M···N2i 0.84 1.87 2.700 (3) 173
C1M—H1BM···O1ii 0.98 2.58 3.402 (3) 141
C6—H6···O4iii 0.95 2.53 3.450 (3) 162
C11—H11···O1 0.95 2.44 2.767 (3) 100
C15—H15···O1Mii 0.95 2.54 3.427 (3) 156

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z.

Table 3 Comparison of Mo═O and Mo—N bond lengths (Å), N—Mo═O and O═Mo═O (°) and Mo—O (solvent)1 interactions (Å) in some related dioxidomolybdenium(VI) complexes

Cis-dioxo molybdenum complex Mo=O Mo-N Mo–O(solv)1 N—Mo=O O=Mo=O
[MoO2(bnms)(MeOH)I 1.709 2.248 2.337 155.24 105.93
1.709 96.81
[MoO2(sae)(MeOH)]a 1.697 2.252 2.339 158.9 106.1
1.704 94.2
[MoO2(cysS-OR)(MeOH)]b 1.699 2.291 2.385 160.8 105.9
1.709 92.5
[MoO2(hbhy)(EtOH)]c 1.696 2.234 2.356 158.44 106.03
1.699 93.84
[MoO2(doin)(MeOH)]d 1.700 2.250 2.331 159.54 106.65
1.714 93.16
[MoO2(hpmp)(MeOH)]e 1.703 2.274 2.355 159.38 107.05
1.709 93.07
[MoO2(hpemp)(MeOH)]f 1.707 2.268 2.387 159.81 106.36
1.699 93.53
[MoO2(moip)(MeOH)]g 1.700 2.251 2.349 158.82 105.61
1.702 95.01
[MoO2(ssh)(MeOH)]h 1.692 2.234 2.349 157.6 106.4
1.705 93.7
[MoO2(hmt)(MeOH)]i 1.727 2.273 2.351 156.41 105.26
1.704 95.29
MoO2(bhpd)(MeOH)j 1.988 2.284 2.301 160.49 105.9
1.717 90.93

Notes: (1) solvent = MeOH or EtOH. References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007).

Table 4 Comparison of important absorption band frequencies (cm-1) in some related dioxidomolybdenium(VI) complexes

Complex νs(Mo═O)1 νs(Mo═O)2 ν(C═N)
[MoO2(bnms)(MeOH)I 939 915 1627
[MoO2(sae)(MeOH)]a 928 906 1641
[MoO2(cysS-OR)(MeOH)]b 995 980 1626
[MoO2(hbhy)(EtOH)]c - - -
[MoO2(doin)(MeOH)]d - - -
[MoO2(hpmp)(MeOH)]e 924 900 1638
[MoO2(hpemp)(MeOH)]f 920 909 1638
[MoO2(moip)(MeOH)]g - - -
[MoO2(ssh)(MeOH)]h 939 911 1637
[MoO2(hmt)(MeOH)]i 932 901 1626
MoO2(bhpd)(MeOH)j 939 914 1579

Notes: (1) ν symmetry; (2) ν asymmetry References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2692).

References

  1. Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–925.
  2. Ambroziak, K., Pelech, R., Milchert, E., Dziembowska, T. & Rozwadowski, Z. (2004). J. Mol. Catal. A, 211, 9–16.
  3. Archer, R. D. & Wang, B. (1990). Inorg. Chem. 29, 39–43.
  4. Bagherzadeh, M. & Amini, M. (2009). Inorg. Chem. Commun. 12, 21–25.
  5. Bagherzadeh, M., Tahsini, L., Latifi, R., Ellern, A. & Woo, L. K. (2008). Inorg. Chim. Acta, 361, 2019–2024.
  6. Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.
  7. Bindlish, J. M., Bhatia, S. C., Gautam, P. & Jain, P. C. (1978). Indian J. Chem. Sect. A, 16, 279–282.
  8. Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129.
  9. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  10. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Chang, S., Jones, L., Wang, C., Henling, L. M. & Grubbs, R. H. (1998). Organometallics, 17, 3460–3465.
  12. Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.
  13. Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.
  14. Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.
  15. Glowiak, T., Jerzykiewicz, L., Sobczak, J. M. & Ziolkowski, J. J. (2003). Inorg. Chim. Acta, 356, 387–392.
  16. Hatefi, M., Moghadam, M., Sheikhshoaei, I., Mirkhani, V., Tangestaninejad, S., Mohammadpoor-Baltork, I. & Kargar, H. (2009). Appl. Catal. A, 370, 66–71.
  17. Holm, R. H. (1990). Coord. Chem. Rev. 100, 183–221.
  18. Jalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537–2544. [DOI] [PubMed]
  19. Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). Inorg. Chem. 35, 2602–2610. [DOI] [PubMed]
  20. Liimatainen, J., Lehtonen, A. & Sillanpaa, R. (2000). Polyhedron, 19, 1133–1138.
  21. Maurya, R. C., Mishra, D. D., Rao, N. S., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect A, 36, 599–601.
  22. Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125. [DOI] [PMC free article] [PubMed]
  23. Niaz, M., Iran, S. & Abdolreza, R. (2010). Acta Cryst. E66, m202. [DOI] [PMC free article] [PubMed]
  24. Perrin, D. D., Armarego, W. L. & Perrin, D. R. (1990). Purification of Laboratory Chemicals, 2nd ed. New York: Pergamon.
  25. Pramaniky, N. R., Ghoshz, S., Raychaudhuriy, T. K., Chaudhurix, S., Drew, M. G. B. & Mandal, S. S. S. (2007). J. Coord. Chem. 60, 2177–2190.
  26. Rao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.
  27. Rezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli-Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799–806.
  28. Saeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591. [DOI] [PMC free article] [PubMed]
  29. Sheikhshoaie, I. & Fabian, W. M. F. (2009). Curr. Org. Chem 13, 149–171.
  30. Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.
  31. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  32. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  33. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  34. Vrdoljak, V., Dilovic, L., Rubcic, M., Pavelic, S. K., Kralj, M., Matkovic-Catogovic, D., Piantanida, I., Novak, P., Rozman, A. & Cindric, M. (2010). Eur. J. Med. Chem. 45, 38–48. [DOI] [PubMed]
  35. Yamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020101/dn2692sup1.cif

e-67-0m839-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020101/dn2692Isup2.hkl

e-67-0m839-Isup2.hkl (287.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES