Abstract
The title molecule, C17H15ClN2O5, contains a quinolyl unit linked to a functionalized oxirane system with a 2,3-trans arrangement of the substituents (ester group versus quinolyl). The structure can be described as being built up from zigzag layers parallel to (10). The heterocyclic ring of the quinolyl unit forms a dihedral angle of 60.05 (1)° with the oxirane plane. The crystal packing is stabilized by intermolecular C—H⋯O and C—H⋯N hydrogen bonding, resulting in the formation of an infinite three-dimensional network and reinforcing the cohesion between the layers.
Related literature
For applications of quinoline derivatives, see: Kansagra et al. (2000 ▶); Vasquez et al. (2004 ▶); Guo et al. (2009 ▶) Cunico et al. (2006 ▶); Mahamoud et al. (2006 ▶); Kumar et al. (2008 ▶); Hong et al. (2010 ▶). For the biological activity of naturally occurring oxiranes, see: Bino (1980 ▶); Cross (1960 ▶); Marco-Contelles et al. (2004 ▶); Pearson & Ong (1981 ▶). For applications of oxiranes, see: Hanson (1991 ▶); Kumar & Leelavathi (2007 ▶); Das et al. (2007 ▶); Boukhris et al. (1996 ▶); Ammadi et al., (1999 ▶). For our previous work on the preparation of quinoline derivatives, see: Bouraiou et al. (2008 ▶); Benzerka et al. (2008 ▶); Ladraa et al. (2010 ▶). For weak hydrogen bonds, see: Desiraju & Steiner, (1999 ▶).
Experimental
Crystal data
C17H15ClN2O5
M r = 362.76
Triclinic,
a = 8.3784 (3) Å
b = 10.1071 (4) Å
c = 10.7027 (4) Å
α = 102.489 (2)°
β = 103.977 (2)°
γ = 96.026 (2)°
V = 846.77 (6) Å3
Z = 2
Mo Kα radiation
μ = 0.26 mm−1
T = 150 K
0.28 × 0.21 × 0.12 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▶) T min = 0.842, T max = 0.970
12867 measured reflections
3803 independent reflections
3369 reflections with I > 2σ(I)
R int = 0.020
Refinement
R[F 2 > 2σ(F 2)] = 0.049
wR(F 2) = 0.141
S = 1.02
3803 reflections
229 parameters
H-atom parameters constrained
Δρmax = 0.54 e Å−3
Δρmin = −0.42 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023336/zj2015sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023336/zj2015Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811023336/zj2015Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C7—H7⋯N19i | 0.95 | 2.57 | 3.434 (3) | 151 |
C24—H24A⋯O16ii | 0.98 | 2.57 | 3.152 (4) | 118 |
Symmetry codes: (i) ; (ii)
.
Acknowledgments
We are grateful to all personal of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance.
supplementary crystallographic information
Comment
Due to their presence in a large number of natural products and bioactive compounds and their close association with the biological activities, quinoline and their derivatives have been extensively investigated by organic and biological chemists (Kansagra et al., 2000; Vasquez et al., 2004; Guo et al., 2009). They are used in production of anti-malarial, antibiotics, anti-hypertension, anti-diabetic and so many other drugs (Cunico et al., 2006; Mahamoud et al., 2006; Kumar et al. 2008; Hong et al. 2010).
Oxiranes are important intermediates and starting materials which have found much use in synthetic organic chemistry owing to their ease of formation and ready activity toward nucleophiles (Hanson et al., 1991; Kumar et al., 2007; Das et al. 2007). In addition, natural occurring oxiranes are associated with various biological activities (Cross, 1960; Bino, 1980; Pearson et al., 1981; Marco-Contelles et al., 2004). 2-cyano-2-alkoxycarbonyloxiranes proved to be versatile reagents from which a large variety of compounds might be synthesized (Boukhris et al., 1996; Ammadi et al., 1999). In connection with our research program aimed at the synthesis and the biological evaluation of quinoline derivatives (Bouraiou et al., 2008; Benzerka et al., 2008; Ladraa et al., 2010), we report in this paper the synthesis and the structure determination by X-ray of a new quinoline compound where quinolyl moiety is linked to functionalized oxirane system. The reactivity of this compound and its analogues toward nucleophiles is under investigation.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.
In the asymmetric unit of title compound the oxiranes unit bearing an ester and cyano groups at C3 and quinolyl moiety at C2.
The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.43 (5)°. The heterocycle ring of quinolyl unit form also with oxirane plane a dihedral angle of 60.05 (1)°.
The crystal packing can be described as layers in zig zag parallel to (1–10) plane (Fig. 2). A weak hydrogen bond interactions (C—H···N=3.434 (3) Å)along the [110] directions ensure the stability in the same layer. (as reported by Desiraju & Steiner, 1999) These layers are linked together by a classical weak C—H···O interactions and π-π stacking The crystal packing is stabilized by intra and intermolecular hydrogen bond (C—H···N and C—H···O) and π-π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure (Fig. 3). Hydrogen-bonding parameters are listed in table 1.
Experimental
The title compound was obtained by oxidation of (E)-ethyl-3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanoacrylate with 2,5 equivalents of m-chloroperoxybenzoic acid in dichloromethane at room temperature in the presence of 1,2 equivalents of potassium carbonate. Column chromatography (silica gel, eluant: CH2Cl2) of the residue afforded pure product as yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane / methanol solution.
Refinement
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.
Figures
Fig. 1.
(Farrugia, 1997) the structure of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level.
Fig. 2.
(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [N—H···O and C—H···O] as dashed line.
Fig. 3.
(Brandenburg & Berndt, 2001)A packing diagram of (I)viewed down the b axis.
Crystal data
C17H15ClN2O5 | Z = 2 |
Mr = 362.76 | F(000) = 376 |
Triclinic, P1 | Dx = 1.423 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3784 (3) Å | Cell parameters from 7904 reflections |
b = 10.1071 (4) Å | θ = 2.5–27.5° |
c = 10.7027 (4) Å | µ = 0.26 mm−1 |
α = 102.489 (2)° | T = 150 K |
β = 103.977 (2)° | Block, colourless |
γ = 96.026 (2)° | 0.28 × 0.21 × 0.12 mm |
V = 846.77 (6) Å3 |
Data collection
Bruker APEXII diffractometer | 3369 reflections with I > 2σ(I) |
graphite | Rint = 0.020 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→10 |
Tmin = 0.842, Tmax = 0.970 | k = −13→13 |
12867 measured reflections | l = −13→10 |
3803 independent reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5515P] where P = (Fo2 + 2Fc2)/3 |
3803 reflections | (Δ/σ)max = 0.006 |
229 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.21857 (5) | −0.03042 (5) | 1.03331 (5) | 0.03620 (16) | |
C1 | 0.3363 (2) | 0.09251 (17) | 0.98421 (17) | 0.0277 (4) | |
N2 | 0.45074 (18) | 0.18016 (15) | 1.07892 (14) | 0.0279 (3) | |
C3 | 0.5441 (2) | 0.27800 (17) | 1.04347 (17) | 0.0274 (4) | |
C4 | 0.6751 (2) | 0.37174 (18) | 1.14484 (18) | 0.0312 (4) | |
O5 | 0.69369 (17) | 0.35382 (14) | 1.27008 (13) | 0.0379 (3) | |
C6 | 0.8178 (3) | 0.4523 (3) | 1.3736 (2) | 0.0508 (6) | |
H6A | 0.9272 | 0.448 | 1.3567 | 0.076* | |
H6B | 0.8202 | 0.4318 | 1.4593 | 0.076* | |
H6C | 0.7909 | 0.5447 | 1.3756 | 0.076* | |
C7 | 0.7706 (2) | 0.4691 (2) | 1.1101 (2) | 0.0371 (4) | |
H7 | 0.8587 | 0.5309 | 1.177 | 0.045* | |
C8 | 0.7410 (3) | 0.4798 (2) | 0.9768 (2) | 0.0387 (4) | |
H8 | 0.8091 | 0.5483 | 0.9558 | 0.046* | |
C9 | 0.6153 (2) | 0.3923 (2) | 0.8783 (2) | 0.0349 (4) | |
O10 | 0.5731 (2) | 0.39496 (16) | 0.74704 (15) | 0.0439 (4) | |
C11 | 0.6705 (3) | 0.4986 (2) | 0.7119 (2) | 0.0502 (6) | |
H11A | 0.6632 | 0.5894 | 0.7635 | 0.075* | |
H11B | 0.628 | 0.4926 | 0.6168 | 0.075* | |
H11C | 0.7871 | 0.4848 | 0.7313 | 0.075* | |
C12 | 0.5154 (2) | 0.28768 (18) | 0.90951 (18) | 0.0307 (4) | |
C13 | 0.3894 (2) | 0.18913 (19) | 0.81199 (18) | 0.0326 (4) | |
H13 | 0.3669 | 0.1923 | 0.7214 | 0.039* | |
C14 | 0.2996 (2) | 0.08919 (18) | 0.84700 (17) | 0.0309 (4) | |
C15 | 0.1747 (3) | −0.0235 (2) | 0.74667 (18) | 0.0367 (4) | |
H15 | 0.1828 | −0.1184 | 0.7581 | 0.044* | |
O16 | 0.13334 (18) | −0.01119 (16) | 0.61244 (13) | 0.0421 (4) | |
C17 | 0.0041 (2) | −0.00089 (19) | 0.67835 (18) | 0.0347 (4) | |
C18 | −0.0392 (2) | 0.1364 (2) | 0.7104 (2) | 0.0379 (4) | |
N19 | −0.0698 (2) | 0.2443 (2) | 0.7373 (3) | 0.0590 (6) | |
C20 | −0.1344 (3) | −0.1243 (2) | 0.6298 (2) | 0.0429 (5) | |
O21 | −0.1073 (3) | −0.23961 (17) | 0.6035 (2) | 0.0796 (7) | |
O22 | −0.27917 (19) | −0.08591 (15) | 0.62274 (14) | 0.0423 (4) | |
C23 | −0.4215 (3) | −0.1992 (3) | 0.5871 (3) | 0.0537 (6) | |
H23A | −0.4089 | −0.275 | 0.516 | 0.064* | |
H23B | −0.4248 | −0.2353 | 0.6655 | 0.064* | |
C24 | −0.5687 (4) | −0.1501 (3) | 0.5431 (4) | 0.0786 (10) | |
H24A | −0.5758 | −0.07 | 0.6108 | 0.118* | |
H24B | −0.6643 | −0.2222 | 0.5272 | 0.118* | |
H24C | −0.5697 | −0.1233 | 0.4602 | 0.118* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0300 (2) | 0.0350 (3) | 0.0367 (3) | −0.00048 (17) | 0.00372 (17) | 0.00336 (18) |
C1 | 0.0245 (8) | 0.0253 (8) | 0.0276 (8) | 0.0055 (6) | 0.0001 (6) | 0.0016 (6) |
N2 | 0.0247 (7) | 0.0284 (7) | 0.0248 (7) | 0.0059 (6) | −0.0002 (5) | 0.0013 (6) |
C3 | 0.0245 (8) | 0.0254 (8) | 0.0274 (8) | 0.0075 (6) | 0.0008 (6) | 0.0018 (6) |
C4 | 0.0277 (8) | 0.0294 (9) | 0.0292 (9) | 0.0059 (7) | −0.0003 (7) | 0.0009 (7) |
O5 | 0.0337 (7) | 0.0392 (7) | 0.0265 (7) | −0.0048 (6) | −0.0059 (5) | −0.0005 (5) |
C6 | 0.0442 (12) | 0.0547 (13) | 0.0318 (11) | −0.0119 (10) | −0.0056 (8) | −0.0069 (9) |
C7 | 0.0311 (9) | 0.0294 (9) | 0.0416 (11) | 0.0026 (7) | 0.0007 (8) | 0.0012 (8) |
C8 | 0.0392 (10) | 0.0312 (9) | 0.0458 (11) | 0.0059 (8) | 0.0114 (9) | 0.0098 (8) |
C9 | 0.0392 (10) | 0.0316 (9) | 0.0350 (10) | 0.0110 (8) | 0.0096 (8) | 0.0087 (8) |
O10 | 0.0538 (9) | 0.0443 (8) | 0.0356 (8) | 0.0093 (7) | 0.0116 (6) | 0.0144 (6) |
C11 | 0.0678 (15) | 0.0415 (12) | 0.0497 (13) | 0.0123 (11) | 0.0237 (11) | 0.0188 (10) |
C12 | 0.0309 (9) | 0.0293 (9) | 0.0290 (9) | 0.0109 (7) | 0.0032 (7) | 0.0040 (7) |
C13 | 0.0379 (10) | 0.0318 (9) | 0.0235 (8) | 0.0124 (7) | 0.0005 (7) | 0.0033 (7) |
C14 | 0.0308 (9) | 0.0287 (8) | 0.0252 (8) | 0.0093 (7) | −0.0029 (7) | −0.0004 (7) |
C15 | 0.0411 (10) | 0.0302 (9) | 0.0272 (9) | 0.0067 (8) | −0.0045 (7) | −0.0016 (7) |
O16 | 0.0419 (8) | 0.0488 (8) | 0.0239 (7) | 0.0100 (6) | −0.0022 (5) | −0.0037 (6) |
C17 | 0.0367 (10) | 0.0301 (9) | 0.0269 (9) | 0.0031 (7) | −0.0036 (7) | 0.0003 (7) |
C18 | 0.0265 (9) | 0.0329 (10) | 0.0426 (11) | −0.0005 (7) | −0.0027 (7) | 0.0008 (8) |
N19 | 0.0366 (10) | 0.0347 (10) | 0.0865 (16) | 0.0036 (8) | −0.0016 (10) | −0.0033 (10) |
C20 | 0.0435 (11) | 0.0354 (10) | 0.0332 (10) | −0.0011 (8) | −0.0092 (8) | −0.0004 (8) |
O21 | 0.0689 (12) | 0.0308 (9) | 0.1015 (17) | 0.0017 (8) | −0.0163 (11) | −0.0143 (9) |
O22 | 0.0436 (8) | 0.0386 (8) | 0.0362 (7) | −0.0092 (6) | 0.0032 (6) | 0.0081 (6) |
C23 | 0.0507 (13) | 0.0498 (13) | 0.0491 (13) | −0.0164 (10) | 0.0050 (10) | 0.0094 (10) |
C24 | 0.0601 (17) | 0.0529 (16) | 0.126 (3) | 0.0022 (13) | 0.0284 (18) | 0.0286 (18) |
Geometric parameters (Å, °)
Cl1—C1 | 1.7514 (19) | C11—H11C | 0.98 |
C1—N2 | 1.302 (2) | C12—C13 | 1.412 (3) |
C1—C14 | 1.418 (2) | C13—C14 | 1.366 (3) |
N2—C3 | 1.370 (2) | C13—H13 | 0.95 |
C3—C12 | 1.422 (2) | C14—C15 | 1.492 (2) |
C3—C4 | 1.429 (2) | C15—O16 | 1.430 (2) |
C4—O5 | 1.365 (2) | C15—C17 | 1.505 (3) |
C4—C7 | 1.372 (3) | C15—H15 | 1 |
O5—C6 | 1.431 (2) | O16—C17 | 1.429 (3) |
C6—H6A | 0.98 | C17—C18 | 1.461 (3) |
C6—H6B | 0.98 | C17—C20 | 1.516 (3) |
C6—H6C | 0.98 | C18—N19 | 1.139 (3) |
C7—C8 | 1.417 (3) | C20—O21 | 1.197 (3) |
C7—H7 | 0.95 | C20—O22 | 1.302 (3) |
C8—C9 | 1.367 (3) | O22—C23 | 1.478 (3) |
C8—H8 | 0.95 | C23—C24 | 1.393 (4) |
C9—O10 | 1.371 (2) | C23—H23A | 0.99 |
C9—C12 | 1.425 (3) | C23—H23B | 0.99 |
O10—C11 | 1.430 (3) | C24—H24A | 0.98 |
C11—H11A | 0.98 | C24—H24B | 0.98 |
C11—H11B | 0.98 | C24—H24C | 0.98 |
N2—C1—C14 | 125.66 (17) | C14—C13—C12 | 120.43 (17) |
N2—C1—Cl1 | 116.16 (14) | C14—C13—H13 | 119.8 |
C14—C1—Cl1 | 118.18 (13) | C12—C13—H13 | 119.8 |
C1—N2—C3 | 117.43 (15) | C13—C14—C1 | 116.95 (16) |
N2—C3—C12 | 122.01 (15) | C13—C14—C15 | 122.41 (17) |
N2—C3—C4 | 118.49 (16) | C1—C14—C15 | 120.56 (17) |
C12—C3—C4 | 119.50 (17) | O16—C15—C14 | 116.67 (17) |
O5—C4—C7 | 125.88 (16) | O16—C15—C17 | 58.19 (12) |
O5—C4—C3 | 115.19 (16) | C14—C15—C17 | 122.08 (16) |
C7—C4—C3 | 118.92 (17) | O16—C15—H15 | 115.8 |
C4—O5—C6 | 115.66 (16) | C14—C15—H15 | 115.8 |
O5—C6—H6A | 109.5 | C17—C15—H15 | 115.8 |
O5—C6—H6B | 109.5 | C17—O16—C15 | 63.54 (12) |
H6A—C6—H6B | 109.5 | O16—C17—C18 | 114.72 (17) |
O5—C6—H6C | 109.5 | O16—C17—C15 | 58.27 (12) |
H6A—C6—H6C | 109.5 | C18—C17—C15 | 118.78 (16) |
H6B—C6—H6C | 109.5 | O16—C17—C20 | 114.39 (16) |
C4—C7—C8 | 121.65 (18) | C18—C17—C20 | 118.84 (17) |
C4—C7—H7 | 119.2 | C15—C17—C20 | 117.05 (17) |
C8—C7—H7 | 119.2 | N19—C18—C17 | 178.6 (2) |
C9—C8—C7 | 120.54 (19) | O21—C20—O22 | 127.0 (2) |
C9—C8—H8 | 119.7 | O21—C20—C17 | 122.2 (2) |
C7—C8—H8 | 119.7 | O22—C20—C17 | 110.79 (17) |
C8—C9—O10 | 125.59 (18) | C20—O22—C23 | 115.01 (18) |
C8—C9—C12 | 119.68 (18) | C24—C23—O22 | 109.0 (2) |
O10—C9—C12 | 114.73 (17) | C24—C23—H23A | 109.9 |
C9—O10—C11 | 116.36 (18) | O22—C23—H23A | 109.9 |
O10—C11—H11A | 109.5 | C24—C23—H23B | 109.9 |
O10—C11—H11B | 109.5 | O22—C23—H23B | 109.9 |
H11A—C11—H11B | 109.5 | H23A—C23—H23B | 108.3 |
O10—C11—H11C | 109.5 | C23—C24—H24A | 109.5 |
H11A—C11—H11C | 109.5 | C23—C24—H24B | 109.5 |
H11B—C11—H11C | 109.5 | H24A—C24—H24B | 109.5 |
C13—C12—C3 | 117.46 (17) | C23—C24—H24C | 109.5 |
C13—C12—C9 | 122.83 (17) | H24A—C24—H24C | 109.5 |
C3—C12—C9 | 119.69 (17) | H24B—C24—H24C | 109.5 |
C14—C1—N2—C3 | 0.1 (3) | C12—C13—C14—C1 | 1.7 (3) |
Cl1—C1—N2—C3 | −179.64 (12) | C12—C13—C14—C15 | −175.11 (16) |
C1—N2—C3—C12 | 1.9 (2) | N2—C1—C14—C13 | −1.9 (3) |
C1—N2—C3—C4 | −177.41 (15) | Cl1—C1—C14—C13 | 177.79 (13) |
N2—C3—C4—O5 | −0.2 (2) | N2—C1—C14—C15 | 174.96 (17) |
C12—C3—C4—O5 | −179.61 (15) | Cl1—C1—C14—C15 | −5.3 (2) |
N2—C3—C4—C7 | 179.25 (16) | C13—C14—C15—O16 | −9.4 (3) |
C12—C3—C4—C7 | −0.1 (3) | C1—C14—C15—O16 | 173.87 (16) |
C7—C4—O5—C6 | 4.2 (3) | C13—C14—C15—C17 | −77.0 (3) |
C3—C4—O5—C6 | −176.33 (17) | C1—C14—C15—C17 | 106.3 (2) |
O5—C4—C7—C8 | −179.77 (17) | C14—C15—O16—C17 | −112.82 (19) |
C3—C4—C7—C8 | 0.8 (3) | C15—O16—C17—C18 | 109.79 (18) |
C4—C7—C8—C9 | −0.1 (3) | C15—O16—C17—C20 | −107.86 (18) |
C7—C8—C9—O10 | 178.50 (18) | C14—C15—C17—O16 | 103.6 (2) |
C7—C8—C9—C12 | −1.3 (3) | O16—C15—C17—C18 | −102.8 (2) |
C8—C9—O10—C11 | 0.2 (3) | C14—C15—C17—C18 | 0.8 (3) |
C12—C9—O10—C11 | 179.96 (17) | O16—C15—C17—C20 | 103.26 (19) |
N2—C3—C12—C13 | −2.0 (2) | C14—C15—C17—C20 | −153.18 (19) |
C4—C3—C12—C13 | 177.30 (15) | O16—C17—C20—O21 | 40.3 (3) |
N2—C3—C12—C9 | 179.44 (15) | C18—C17—C20—O21 | −179.0 (2) |
C4—C3—C12—C9 | −1.2 (3) | C15—C17—C20—O21 | −25.1 (3) |
C8—C9—C12—C13 | −176.53 (17) | O16—C17—C20—O22 | −140.08 (17) |
O10—C9—C12—C13 | 3.7 (3) | C18—C17—C20—O22 | 0.6 (3) |
C8—C9—C12—C3 | 1.9 (3) | C15—C17—C20—O22 | 154.55 (18) |
O10—C9—C12—C3 | −177.88 (15) | O21—C20—O22—C23 | 4.5 (4) |
C3—C12—C13—C14 | 0.1 (3) | C17—C20—O22—C23 | −175.12 (17) |
C9—C12—C13—C14 | 178.57 (16) | C20—O22—C23—C24 | −161.8 (2) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N19i | 0.95 | 2.57 | 3.434 (3) | 151 |
C24—H24A···O16ii | 0.98 | 2.57 | 3.152 (4) | 118 |
C13—H13···O16 | 0.95 | 2.54 | 2.875 (2) | 101 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2015).
References
- Ammadi, F., Boukhris, S., Souizi, A. & Coudert, G. (1999). Tetrahedron Lett. 40, 6517–6518.
- Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. [DOI] [PMC free article] [PubMed]
- Bino, A. (1980). J. Am. Chem. Soc. 102, 1990–1991.
- Boukhris, S., Souizi, A. & Robert, A. (1996). Tetrahedron Lett. 37, 4693–4696.
- Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
- Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cross, A. D. (1960). Q. Rev. Chem. Soc. 14, 317–335.
- Cunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zannata, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. [DOI] [PubMed]
- Das, B., Reedy, V. S., Krishnaiah, M. & Rao, Y. K. (2007). J. Mol. Catal. A Chem. 270, 89–92.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954–958. [DOI] [PubMed]
- Hanson, R. M. (1991). Chem. Rev. 91, 437–475.
- Hong, M., Cai, C. & Yi, W. B. (2010). J. Fluorine Chem. 131, 111–114.
- Kansagra, B. P., Bhatt, H. H. & Parikh, A. R. (2000). Indian J. Heterocycl. Chem. 10, 5–8.
- Kumar, S. R. & Leelavathi, P. (2007). J. Mol. Catal. A Chem. 266, 65–68.
- Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536–542.
- Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. [DOI] [PMC free article] [PubMed]
- Mahamoud, A., Chevalier, J., Davin-Regli, A., Baebe, J. & Pages, J. M. (2006). Curr. Drug Targets, 7, 843–847. [DOI] [PubMed]
- Marco-Contelles, J., Molina, M. T. & Anjum, S. (2004). Chem. Rev. 6, 2857–2900. [DOI] [PubMed]
- Pearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686–6690.
- Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Vasquez, M. T., Romero, M. & Pujol, M. D. (2004). Bioorg. Med. Chem. 12, 949–956. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023336/zj2015sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023336/zj2015Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811023336/zj2015Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report