Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 22;67(Pt 7):o1754–o1755. doi: 10.1107/S1600536811023336

Ethyl 3-(2-chloro-5,8-dimeth­oxy­quinolin-3-yl)-2-cyano­oxirane-2-carboxyl­ate

Hayette Alliouche a, Sofiane Bouacida b,*, Thierry Roisnel c, Ali Belfaitah a
PMCID: PMC3152015  PMID: 21837137

Abstract

The title mol­ecule, C17H15ClN2O5, contains a quinolyl unit linked to a functionalized oxirane system with a 2,3-trans arrangement of the substituents (ester group versus quinol­yl). The structure can be described as being built up from zigzag layers parallel to (1Inline graphic0). The heterocyclic ring of the quinolyl unit forms a dihedral angle of 60.05 (1)° with the oxirane plane. The crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonding, resulting in the formation of an infinite three-dimensional network and reinforcing the cohesion between the layers.

Related literature

For applications of quinoline derivatives, see: Kansagra et al. (2000); Vasquez et al. (2004); Guo et al. (2009) Cunico et al. (2006); Mahamoud et al. (2006); Kumar et al. (2008); Hong et al. (2010). For the biological activity of naturally occurring oxiranes, see: Bino (1980); Cross (1960); Marco-Contelles et al. (2004); Pearson & Ong (1981). For applications of oxiranes, see: Hanson (1991); Kumar & Leelavathi (2007); Das et al. (2007); Boukhris et al. (1996); Ammadi et al., (1999). For our previous work on the preparation of quinoline derivatives, see: Bouraiou et al. (2008); Benzerka et al. (2008); Ladraa et al. (2010). For weak hydrogen bonds, see: Desiraju & Steiner, (1999).graphic file with name e-67-o1754-scheme1.jpg

Experimental

Crystal data

  • C17H15ClN2O5

  • M r = 362.76

  • Triclinic, Inline graphic

  • a = 8.3784 (3) Å

  • b = 10.1071 (4) Å

  • c = 10.7027 (4) Å

  • α = 102.489 (2)°

  • β = 103.977 (2)°

  • γ = 96.026 (2)°

  • V = 846.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.28 × 0.21 × 0.12 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.842, T max = 0.970

  • 12867 measured reflections

  • 3803 independent reflections

  • 3369 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.141

  • S = 1.02

  • 3803 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023336/zj2015sup1.cif

e-67-o1754-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023336/zj2015Isup2.hkl

e-67-o1754-Isup2.hkl (182.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023336/zj2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N19i 0.95 2.57 3.434 (3) 151
C24—H24A⋯O16ii 0.98 2.57 3.152 (4) 118

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to all personal of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance.

supplementary crystallographic information

Comment

Due to their presence in a large number of natural products and bioactive compounds and their close association with the biological activities, quinoline and their derivatives have been extensively investigated by organic and biological chemists (Kansagra et al., 2000; Vasquez et al., 2004; Guo et al., 2009). They are used in production of anti-malarial, antibiotics, anti-hypertension, anti-diabetic and so many other drugs (Cunico et al., 2006; Mahamoud et al., 2006; Kumar et al. 2008; Hong et al. 2010).

Oxiranes are important intermediates and starting materials which have found much use in synthetic organic chemistry owing to their ease of formation and ready activity toward nucleophiles (Hanson et al., 1991; Kumar et al., 2007; Das et al. 2007). In addition, natural occurring oxiranes are associated with various biological activities (Cross, 1960; Bino, 1980; Pearson et al., 1981; Marco-Contelles et al., 2004). 2-cyano-2-alkoxycarbonyloxiranes proved to be versatile reagents from which a large variety of compounds might be synthesized (Boukhris et al., 1996; Ammadi et al., 1999). In connection with our research program aimed at the synthesis and the biological evaluation of quinoline derivatives (Bouraiou et al., 2008; Benzerka et al., 2008; Ladraa et al., 2010), we report in this paper the synthesis and the structure determination by X-ray of a new quinoline compound where quinolyl moiety is linked to functionalized oxirane system. The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.

In the asymmetric unit of title compound the oxiranes unit bearing an ester and cyano groups at C3 and quinolyl moiety at C2.

The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.43 (5)°. The heterocycle ring of quinolyl unit form also with oxirane plane a dihedral angle of 60.05 (1)°.

The crystal packing can be described as layers in zig zag parallel to (1–10) plane (Fig. 2). A weak hydrogen bond interactions (C—H···N=3.434 (3) Å)along the [110] directions ensure the stability in the same layer. (as reported by Desiraju & Steiner, 1999) These layers are linked together by a classical weak C—H···O interactions and π-π stacking The crystal packing is stabilized by intra and intermolecular hydrogen bond (C—H···N and C—H···O) and π-π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure (Fig. 3). Hydrogen-bonding parameters are listed in table 1.

Experimental

The title compound was obtained by oxidation of (E)-ethyl-3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanoacrylate with 2,5 equivalents of m-chloroperoxybenzoic acid in dichloromethane at room temperature in the presence of 1,2 equivalents of potassium carbonate. Column chromatography (silica gel, eluant: CH2Cl2) of the residue afforded pure product as yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane / methanol solution.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.

Figures

Fig. 1.

Fig. 1.

(Farrugia, 1997) the structure of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [N—H···O and C—H···O] as dashed line.

Fig. 3.

Fig. 3.

(Brandenburg & Berndt, 2001)A packing diagram of (I)viewed down the b axis.

Crystal data

C17H15ClN2O5 Z = 2
Mr = 362.76 F(000) = 376
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3784 (3) Å Cell parameters from 7904 reflections
b = 10.1071 (4) Å θ = 2.5–27.5°
c = 10.7027 (4) Å µ = 0.26 mm1
α = 102.489 (2)° T = 150 K
β = 103.977 (2)° Block, colourless
γ = 96.026 (2)° 0.28 × 0.21 × 0.12 mm
V = 846.77 (6) Å3

Data collection

Bruker APEXII diffractometer 3369 reflections with I > 2σ(I)
graphite Rint = 0.020
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −10→10
Tmin = 0.842, Tmax = 0.970 k = −13→13
12867 measured reflections l = −13→10
3803 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5515P] where P = (Fo2 + 2Fc2)/3
3803 reflections (Δ/σ)max = 0.006
229 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.21857 (5) −0.03042 (5) 1.03331 (5) 0.03620 (16)
C1 0.3363 (2) 0.09251 (17) 0.98421 (17) 0.0277 (4)
N2 0.45074 (18) 0.18016 (15) 1.07892 (14) 0.0279 (3)
C3 0.5441 (2) 0.27800 (17) 1.04347 (17) 0.0274 (4)
C4 0.6751 (2) 0.37174 (18) 1.14484 (18) 0.0312 (4)
O5 0.69369 (17) 0.35382 (14) 1.27008 (13) 0.0379 (3)
C6 0.8178 (3) 0.4523 (3) 1.3736 (2) 0.0508 (6)
H6A 0.9272 0.448 1.3567 0.076*
H6B 0.8202 0.4318 1.4593 0.076*
H6C 0.7909 0.5447 1.3756 0.076*
C7 0.7706 (2) 0.4691 (2) 1.1101 (2) 0.0371 (4)
H7 0.8587 0.5309 1.177 0.045*
C8 0.7410 (3) 0.4798 (2) 0.9768 (2) 0.0387 (4)
H8 0.8091 0.5483 0.9558 0.046*
C9 0.6153 (2) 0.3923 (2) 0.8783 (2) 0.0349 (4)
O10 0.5731 (2) 0.39496 (16) 0.74704 (15) 0.0439 (4)
C11 0.6705 (3) 0.4986 (2) 0.7119 (2) 0.0502 (6)
H11A 0.6632 0.5894 0.7635 0.075*
H11B 0.628 0.4926 0.6168 0.075*
H11C 0.7871 0.4848 0.7313 0.075*
C12 0.5154 (2) 0.28768 (18) 0.90951 (18) 0.0307 (4)
C13 0.3894 (2) 0.18913 (19) 0.81199 (18) 0.0326 (4)
H13 0.3669 0.1923 0.7214 0.039*
C14 0.2996 (2) 0.08919 (18) 0.84700 (17) 0.0309 (4)
C15 0.1747 (3) −0.0235 (2) 0.74667 (18) 0.0367 (4)
H15 0.1828 −0.1184 0.7581 0.044*
O16 0.13334 (18) −0.01119 (16) 0.61244 (13) 0.0421 (4)
C17 0.0041 (2) −0.00089 (19) 0.67835 (18) 0.0347 (4)
C18 −0.0392 (2) 0.1364 (2) 0.7104 (2) 0.0379 (4)
N19 −0.0698 (2) 0.2443 (2) 0.7373 (3) 0.0590 (6)
C20 −0.1344 (3) −0.1243 (2) 0.6298 (2) 0.0429 (5)
O21 −0.1073 (3) −0.23961 (17) 0.6035 (2) 0.0796 (7)
O22 −0.27917 (19) −0.08591 (15) 0.62274 (14) 0.0423 (4)
C23 −0.4215 (3) −0.1992 (3) 0.5871 (3) 0.0537 (6)
H23A −0.4089 −0.275 0.516 0.064*
H23B −0.4248 −0.2353 0.6655 0.064*
C24 −0.5687 (4) −0.1501 (3) 0.5431 (4) 0.0786 (10)
H24A −0.5758 −0.07 0.6108 0.118*
H24B −0.6643 −0.2222 0.5272 0.118*
H24C −0.5697 −0.1233 0.4602 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0300 (2) 0.0350 (3) 0.0367 (3) −0.00048 (17) 0.00372 (17) 0.00336 (18)
C1 0.0245 (8) 0.0253 (8) 0.0276 (8) 0.0055 (6) 0.0001 (6) 0.0016 (6)
N2 0.0247 (7) 0.0284 (7) 0.0248 (7) 0.0059 (6) −0.0002 (5) 0.0013 (6)
C3 0.0245 (8) 0.0254 (8) 0.0274 (8) 0.0075 (6) 0.0008 (6) 0.0018 (6)
C4 0.0277 (8) 0.0294 (9) 0.0292 (9) 0.0059 (7) −0.0003 (7) 0.0009 (7)
O5 0.0337 (7) 0.0392 (7) 0.0265 (7) −0.0048 (6) −0.0059 (5) −0.0005 (5)
C6 0.0442 (12) 0.0547 (13) 0.0318 (11) −0.0119 (10) −0.0056 (8) −0.0069 (9)
C7 0.0311 (9) 0.0294 (9) 0.0416 (11) 0.0026 (7) 0.0007 (8) 0.0012 (8)
C8 0.0392 (10) 0.0312 (9) 0.0458 (11) 0.0059 (8) 0.0114 (9) 0.0098 (8)
C9 0.0392 (10) 0.0316 (9) 0.0350 (10) 0.0110 (8) 0.0096 (8) 0.0087 (8)
O10 0.0538 (9) 0.0443 (8) 0.0356 (8) 0.0093 (7) 0.0116 (6) 0.0144 (6)
C11 0.0678 (15) 0.0415 (12) 0.0497 (13) 0.0123 (11) 0.0237 (11) 0.0188 (10)
C12 0.0309 (9) 0.0293 (9) 0.0290 (9) 0.0109 (7) 0.0032 (7) 0.0040 (7)
C13 0.0379 (10) 0.0318 (9) 0.0235 (8) 0.0124 (7) 0.0005 (7) 0.0033 (7)
C14 0.0308 (9) 0.0287 (8) 0.0252 (8) 0.0093 (7) −0.0029 (7) −0.0004 (7)
C15 0.0411 (10) 0.0302 (9) 0.0272 (9) 0.0067 (8) −0.0045 (7) −0.0016 (7)
O16 0.0419 (8) 0.0488 (8) 0.0239 (7) 0.0100 (6) −0.0022 (5) −0.0037 (6)
C17 0.0367 (10) 0.0301 (9) 0.0269 (9) 0.0031 (7) −0.0036 (7) 0.0003 (7)
C18 0.0265 (9) 0.0329 (10) 0.0426 (11) −0.0005 (7) −0.0027 (7) 0.0008 (8)
N19 0.0366 (10) 0.0347 (10) 0.0865 (16) 0.0036 (8) −0.0016 (10) −0.0033 (10)
C20 0.0435 (11) 0.0354 (10) 0.0332 (10) −0.0011 (8) −0.0092 (8) −0.0004 (8)
O21 0.0689 (12) 0.0308 (9) 0.1015 (17) 0.0017 (8) −0.0163 (11) −0.0143 (9)
O22 0.0436 (8) 0.0386 (8) 0.0362 (7) −0.0092 (6) 0.0032 (6) 0.0081 (6)
C23 0.0507 (13) 0.0498 (13) 0.0491 (13) −0.0164 (10) 0.0050 (10) 0.0094 (10)
C24 0.0601 (17) 0.0529 (16) 0.126 (3) 0.0022 (13) 0.0284 (18) 0.0286 (18)

Geometric parameters (Å, °)

Cl1—C1 1.7514 (19) C11—H11C 0.98
C1—N2 1.302 (2) C12—C13 1.412 (3)
C1—C14 1.418 (2) C13—C14 1.366 (3)
N2—C3 1.370 (2) C13—H13 0.95
C3—C12 1.422 (2) C14—C15 1.492 (2)
C3—C4 1.429 (2) C15—O16 1.430 (2)
C4—O5 1.365 (2) C15—C17 1.505 (3)
C4—C7 1.372 (3) C15—H15 1
O5—C6 1.431 (2) O16—C17 1.429 (3)
C6—H6A 0.98 C17—C18 1.461 (3)
C6—H6B 0.98 C17—C20 1.516 (3)
C6—H6C 0.98 C18—N19 1.139 (3)
C7—C8 1.417 (3) C20—O21 1.197 (3)
C7—H7 0.95 C20—O22 1.302 (3)
C8—C9 1.367 (3) O22—C23 1.478 (3)
C8—H8 0.95 C23—C24 1.393 (4)
C9—O10 1.371 (2) C23—H23A 0.99
C9—C12 1.425 (3) C23—H23B 0.99
O10—C11 1.430 (3) C24—H24A 0.98
C11—H11A 0.98 C24—H24B 0.98
C11—H11B 0.98 C24—H24C 0.98
N2—C1—C14 125.66 (17) C14—C13—C12 120.43 (17)
N2—C1—Cl1 116.16 (14) C14—C13—H13 119.8
C14—C1—Cl1 118.18 (13) C12—C13—H13 119.8
C1—N2—C3 117.43 (15) C13—C14—C1 116.95 (16)
N2—C3—C12 122.01 (15) C13—C14—C15 122.41 (17)
N2—C3—C4 118.49 (16) C1—C14—C15 120.56 (17)
C12—C3—C4 119.50 (17) O16—C15—C14 116.67 (17)
O5—C4—C7 125.88 (16) O16—C15—C17 58.19 (12)
O5—C4—C3 115.19 (16) C14—C15—C17 122.08 (16)
C7—C4—C3 118.92 (17) O16—C15—H15 115.8
C4—O5—C6 115.66 (16) C14—C15—H15 115.8
O5—C6—H6A 109.5 C17—C15—H15 115.8
O5—C6—H6B 109.5 C17—O16—C15 63.54 (12)
H6A—C6—H6B 109.5 O16—C17—C18 114.72 (17)
O5—C6—H6C 109.5 O16—C17—C15 58.27 (12)
H6A—C6—H6C 109.5 C18—C17—C15 118.78 (16)
H6B—C6—H6C 109.5 O16—C17—C20 114.39 (16)
C4—C7—C8 121.65 (18) C18—C17—C20 118.84 (17)
C4—C7—H7 119.2 C15—C17—C20 117.05 (17)
C8—C7—H7 119.2 N19—C18—C17 178.6 (2)
C9—C8—C7 120.54 (19) O21—C20—O22 127.0 (2)
C9—C8—H8 119.7 O21—C20—C17 122.2 (2)
C7—C8—H8 119.7 O22—C20—C17 110.79 (17)
C8—C9—O10 125.59 (18) C20—O22—C23 115.01 (18)
C8—C9—C12 119.68 (18) C24—C23—O22 109.0 (2)
O10—C9—C12 114.73 (17) C24—C23—H23A 109.9
C9—O10—C11 116.36 (18) O22—C23—H23A 109.9
O10—C11—H11A 109.5 C24—C23—H23B 109.9
O10—C11—H11B 109.5 O22—C23—H23B 109.9
H11A—C11—H11B 109.5 H23A—C23—H23B 108.3
O10—C11—H11C 109.5 C23—C24—H24A 109.5
H11A—C11—H11C 109.5 C23—C24—H24B 109.5
H11B—C11—H11C 109.5 H24A—C24—H24B 109.5
C13—C12—C3 117.46 (17) C23—C24—H24C 109.5
C13—C12—C9 122.83 (17) H24A—C24—H24C 109.5
C3—C12—C9 119.69 (17) H24B—C24—H24C 109.5
C14—C1—N2—C3 0.1 (3) C12—C13—C14—C1 1.7 (3)
Cl1—C1—N2—C3 −179.64 (12) C12—C13—C14—C15 −175.11 (16)
C1—N2—C3—C12 1.9 (2) N2—C1—C14—C13 −1.9 (3)
C1—N2—C3—C4 −177.41 (15) Cl1—C1—C14—C13 177.79 (13)
N2—C3—C4—O5 −0.2 (2) N2—C1—C14—C15 174.96 (17)
C12—C3—C4—O5 −179.61 (15) Cl1—C1—C14—C15 −5.3 (2)
N2—C3—C4—C7 179.25 (16) C13—C14—C15—O16 −9.4 (3)
C12—C3—C4—C7 −0.1 (3) C1—C14—C15—O16 173.87 (16)
C7—C4—O5—C6 4.2 (3) C13—C14—C15—C17 −77.0 (3)
C3—C4—O5—C6 −176.33 (17) C1—C14—C15—C17 106.3 (2)
O5—C4—C7—C8 −179.77 (17) C14—C15—O16—C17 −112.82 (19)
C3—C4—C7—C8 0.8 (3) C15—O16—C17—C18 109.79 (18)
C4—C7—C8—C9 −0.1 (3) C15—O16—C17—C20 −107.86 (18)
C7—C8—C9—O10 178.50 (18) C14—C15—C17—O16 103.6 (2)
C7—C8—C9—C12 −1.3 (3) O16—C15—C17—C18 −102.8 (2)
C8—C9—O10—C11 0.2 (3) C14—C15—C17—C18 0.8 (3)
C12—C9—O10—C11 179.96 (17) O16—C15—C17—C20 103.26 (19)
N2—C3—C12—C13 −2.0 (2) C14—C15—C17—C20 −153.18 (19)
C4—C3—C12—C13 177.30 (15) O16—C17—C20—O21 40.3 (3)
N2—C3—C12—C9 179.44 (15) C18—C17—C20—O21 −179.0 (2)
C4—C3—C12—C9 −1.2 (3) C15—C17—C20—O21 −25.1 (3)
C8—C9—C12—C13 −176.53 (17) O16—C17—C20—O22 −140.08 (17)
O10—C9—C12—C13 3.7 (3) C18—C17—C20—O22 0.6 (3)
C8—C9—C12—C3 1.9 (3) C15—C17—C20—O22 154.55 (18)
O10—C9—C12—C3 −177.88 (15) O21—C20—O22—C23 4.5 (4)
C3—C12—C13—C14 0.1 (3) C17—C20—O22—C23 −175.12 (17)
C9—C12—C13—C14 178.57 (16) C20—O22—C23—C24 −161.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···N19i 0.95 2.57 3.434 (3) 151
C24—H24A···O16ii 0.98 2.57 3.152 (4) 118
C13—H13···O16 0.95 2.54 2.875 (2) 101

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2015).

References

  1. Ammadi, F., Boukhris, S., Souizi, A. & Coudert, G. (1999). Tetrahedron Lett. 40, 6517–6518.
  2. Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. [DOI] [PMC free article] [PubMed]
  3. Bino, A. (1980). J. Am. Chem. Soc. 102, 1990–1991.
  4. Boukhris, S., Souizi, A. & Robert, A. (1996). Tetrahedron Lett. 37, 4693–4696.
  5. Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
  6. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  7. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  9. Cross, A. D. (1960). Q. Rev. Chem. Soc. 14, 317–335.
  10. Cunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zannata, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. [DOI] [PubMed]
  11. Das, B., Reedy, V. S., Krishnaiah, M. & Rao, Y. K. (2007). J. Mol. Catal. A Chem. 270, 89–92.
  12. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press.
  13. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  14. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  15. Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954–958. [DOI] [PubMed]
  16. Hanson, R. M. (1991). Chem. Rev. 91, 437–475.
  17. Hong, M., Cai, C. & Yi, W. B. (2010). J. Fluorine Chem. 131, 111–114.
  18. Kansagra, B. P., Bhatt, H. H. & Parikh, A. R. (2000). Indian J. Heterocycl. Chem. 10, 5–8.
  19. Kumar, S. R. & Leelavathi, P. (2007). J. Mol. Catal. A Chem. 266, 65–68.
  20. Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536–542.
  21. Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. [DOI] [PMC free article] [PubMed]
  22. Mahamoud, A., Chevalier, J., Davin-Regli, A., Baebe, J. & Pages, J. M. (2006). Curr. Drug Targets, 7, 843–847. [DOI] [PubMed]
  23. Marco-Contelles, J., Molina, M. T. & Anjum, S. (2004). Chem. Rev. 6, 2857–2900. [DOI] [PubMed]
  24. Pearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686–6690.
  25. Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Vasquez, M. T., Romero, M. & Pujol, M. D. (2004). Bioorg. Med. Chem. 12, 949–956. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023336/zj2015sup1.cif

e-67-o1754-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023336/zj2015Isup2.hkl

e-67-o1754-Isup2.hkl (182.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023336/zj2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES