Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 25;67(Pt 7):o1781–o1782. doi: 10.1107/S1600536811023658

5-Benzyl­idene-3-phenyl-2-phenyl­imino-1,3-thia­zolidin-4-one

Matthias Zeller a,*, Vijay Satam b, Ravi Kumar Bandi c, Ajaya Kumar Behera c, Bijay Kumar Mishra c, Hari Pati c, Moses Lee b
PMCID: PMC3152016  PMID: 21837156

Abstract

The title compound, C22H16N2OS, is a chalcone analog with a thia­zolidinone core that was synthesized as a potential cytotoxic and anti­cancer agent. The structure is commensurately modulated by unit-cell doubling along the direction of the a axis of the cell. The two crystallographically independent mol­ecules are differerentiated by the dihedral angle between the mean planes of the benzyl­idene phenyl group against the thia­zolidin-4-one moiety, which is 5.01 (7)° in one mol­ecule, and 17.41 (6)° in the other. The two mol­ecules are otherwise close to being indistinguishable and are related by crystallographic pseudo-translation. The two mol­ecules are not planar but are slightly bent with the benzyl­idene and phenyl­imino substituents being bent upwards with respect to the center planes of the two mol­ecules. The degree of bending of the two halves of the thia­zolidin-4-one moieties (defined as the planes that inter­sect at the S atom) are 11.08 (7) and 15.88 (7)°. Packing of the mol­ecules is facilitated by C—H⋯π inter­actions and slipped π–π stacking between one of the phenyl rings and a neighboring ethylene π system [distance between the centroid of the ethylene group and the closest phenyl C atom = 3.267 (2) Å, Cg(phenyl)⋯Cg(ethylene) = 3.926 Å].

Related literature

Abdel-Aziz et al. (2010), Babu et al. (2011) and Chavda et al. (2009) describe the use of conjugated styryl ketones and related compounds as potential cytotoxic and anti­cancer agents. Satam et al. (2011) gives background to compounds with a thia­zolidinone pharmacophore and describe structures related to the title compound.graphic file with name e-67-o1781-scheme1.jpg

Experimental

Crystal data

  • C22H16N2OS

  • M r = 356.43

  • Monoclinic, Inline graphic

  • a = 10.7814 (9) Å

  • b = 32.779 (3) Å

  • c = 9.8907 (8) Å

  • β = 98.392 (1)°

  • V = 3458.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.55 × 0.41 × 0.33 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.632, T max = 0.746

  • 23712 measured reflections

  • 10081 independent reflections

  • 7732 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.125

  • S = 1.03

  • 10081 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023658/gk2385sup1.cif

e-67-o1781-sup1.cif (42.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023658/gk2385Isup2.hkl

e-67-o1781-Isup2.hkl (493KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023658/gk2385Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯S1B 0.95 2.92 3.6214 (15) 131
C12A—H12A⋯C2B 0.95 2.85 3.7340 (19) 156
C12A—H12A⋯C3B 0.95 2.59 3.5270 (19) 167
C12B—H12B⋯S1Ai 0.95 2.96 3.6118 (15) 127
C12B—H12B⋯C3Ai 0.95 2.76 3.6700 (19) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

Support from Conjura is gratefully acknowledged. Support from the Department of Chemistry, Sambalpur University for providing facilities for research is also acknowledged. The X-ray diffractometer at Youngstown State University was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and by Youngstown State University.

supplementary crystallographic information

Comment

Continuing our work on the design, syntheses, and evaluation of conjugated styryl ketones and related compounds as potential cytotoxic and anticancer agents (Chavda et al., 2009, Babu et al., 2011, Satam et al., 2011) we synthesized a series of novel chalcone analogs possessing a thiazolidinone core. We envisaged that a combination of the 3-aryl-2-propenoyl unit in chalcones and the thiazolidinone pharmacophore would lead to a series of novel chalcone analogs that may provide a synergistic effect to exhibit interesting cytotoxic activities against malignant cells. A novel series of eleven compounds was assessed for cytotoxic activity against murine B16 and L1210 cancer cell lines (Satam et al., 2011). The title compound belonging to this series was subjected to X-ray crystallographic analysis in order to investigate the geometry about the alkene bond as well as the overall conformation of the compound.

The title compound (3) was synthesized by condensation of 2-phenylimino-3-phenylthiazolidin-4-one (1) with benzaldehyde as shown in Figure 1. Re-crystallization from methanol yielded crystals suitable for X-ray diffraction analysis. The structure crystallizes in P21/c with two crystallographically independent but chemically identical molecules A and B per asymmetric part of the unit cell, Figure 2. Bond distances and angles in both moleucles are in the expected ranges, a Mogul geometry check as implemented in the program Mercury (Macrae et al., 2008) did not indicate any unusual geometric parameters, and double and single bonds are located as expected (Scheme 1, Figure 1). The benzylidene double bond shows the phenyl substituent and the sulfur atoms to be in cis position to each other. The two molecules have very similar conformations and in both molecules the heterocylic ring sections are not planar but are slightly U-shaped with the benzylidene and phenylimino substituents being bent upwards with respect to the center planes of the two molecules. The degree of bending of the thiazolidin-4-one moieties, defined as the angle between the plane formed by the two N atoms, the S atom and C1 and C17 on the one hand and that of the carbonyl group, the sulfur atom and C3 and C4 on the other, is 11.08 (7)° for the A molecule, and 15.88 (7)° for the B molecule. A similar slight deviation from planarity was observed earlier for the 4-methyl benzylidene derivative of the title compound, which has an equivalent bend angle of 15.9 (1)°. The 3-bromo-6 methyl derivative, on the other hand, is essentially planar with a bend angle of only 2.98 (4)° (Satam et al., 2011).

The major difference between the two molecules in the structure of the title compound is the rotation angle of the benzylidene phenyl rings with respect to the remainder of the molecules. The torsion angle of the C—H bonded phenyl group against the thiazolidin-4-one moiety is 5.01 (7)° in molecule A, and 17.41 (6)° in molecule B. All other torsion angles, that of the phenylimino and of the phenyl rings, differ only marginally between the two molecules as can be seen in an overlay of the two molecules, Figure 3.

The two crystallographically independent molecules are not only conformationally very similar, they are also related by a crystallographic pseudotranslation along the a-axis of the unit cell as shown in Figure 4. The structure can indeed also be successfully refined in a smaller cell with the a-axis length cut in half. If refined in this smaller volume setting the benzylidene phenyl ring has to be refined as being disordered over two equally occupied mutually incompatible sites closely resembling the overlays shown in Figures 3 and 4. R values and figures of merit for this disordered structure are actually lower (R1 = 0.0436 and wR2 = 0.1157) than those of the actual structure. Reflections due to the unit cell doubling are however clearly visible in the diffraction pattern and the lower R value can be readily explained by the omission of the weaker less accurately determined reflections in the average structure. Satellite reflections caused by the unit cell doubling have an average intensity of 5.8 σ, while all other data average to 18.9 times σ. The structure can thus be seen as a commensurately modulated structure with a q-vector of 0.5 along the a-axis direction with the phenyl torsion angles as the only major modulation parameter. Packing of the molecules is unexceptional and partially facilitated by C—H···π interactions (Figure 5) and some slipped π–π stacking, e.g. between the ring of C5A through C10A and the double bond of C3B and C4B. The closest contacts, from C10A towards C3Bi and C4Bi, are with 3.374 (2) and 3.295 (2) Å well within the range of substantial π–π interactions (symmetry operator (i): 1 - x,-y,-z). The distance between C10A and the centroid of the double bond is 3.267 Å.

Experimental

To a solution of 2-phenylimino-3-phenylthiazolidin-4-one (Abdel-Aziz et al., 2010) (1, 0.27 g, 1.0 mmol) and benzaldehyde (2, 0.11 g, 1.0 mmol) in ethanol (5.0 ml) was added aqueous potassium carbonate (15%, 3.0 ml) at room temperature. The reaction mixture was stirred at room temperature for 10 h. The progress of the reaction was monitored by TLC using 50% ethyl acetate in hexane as the eluent system. The precipitated solid was filtered, washed with water and dried. The crude product was purified by column chromatography using silica gel and 30% ethyl acetate in hexane as the eluent system to obtain pure product as a white solid. The compound was dissolved in hot methanol and the clear solution was left at room temperature for two days. The crystals formed were filtered off, washed with cold methanol and dried in vacuum. (Yield: 0.21 g, 58.3%; m.p.: 384–386 K; IR (KBr) cm-11680, 1640, 1591, 1370, 1264, 739, 695. 1H NMR (CDCl3): δ 7.83 (s, 1H), 7.57–7.53 (m, 2H), 7.50–7.34 (m, 10H), 7.19–7.15 (m, 1H), 6.99–6.96 (m, 2H); MS: ESI (m/z) 357.3 (M+H)+.

Refinement

All hydrogen atoms were added in calculated positions with a C—H bond distance of 0.95 Å and were refined with an isotropic displacement parameters of 1.2 times that of the equivalent isotropic displacement parameter of the adjacent carbon atom.

Figures

Fig. 1.

Fig. 1.

Synthetic pathway towards 5-benzylidene-3-phenyl-2-(phenylimino)thiazolidin-4-one (3)

Fig. 2.

Fig. 2.

Thermal ellipsoid style plot of the molecules of the title compound with atom numbering scheme. Probability levels for non-H atoms are at 50%.

Fig. 3.

Fig. 3.

Least squares overlay of the two crystallographically independent molecules. Red: molecule A, orange: molecule B.

Fig. 4.

Fig. 4.

View down the a-axis showing the pseudotranslation along this axis. Red: molecule A, orange: molecule B.

Fig. 5.

Fig. 5.

Packing view of (3). Blue dashed lines indicate significant C—H···π interactions.

Crystal data

C22H16N2OS F(000) = 1488
Mr = 356.43 Dx = 1.369 Mg m3
Monoclinic, P21/c Melting point: 385 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.7814 (9) Å Cell parameters from 6817 reflections
b = 32.779 (3) Å θ = 2.3–30.7°
c = 9.8907 (8) Å µ = 0.20 mm1
β = 98.392 (1)° T = 100 K
V = 3458.0 (5) Å3 Block, colourless
Z = 8 0.55 × 0.41 × 0.33 mm

Data collection

Bruker SMART APEX CCD diffractometer 10081 independent reflections
Radiation source: fine-focus sealed tube 7732 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 31.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.632, Tmax = 0.746 k = −47→47
23712 measured reflections l = −14→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0979P] where P = (Fo2 + 2Fc2)/3
10081 reflections (Δ/σ)max < 0.001
469 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.37254 (3) 0.113655 (9) 0.05977 (3) 0.01578 (8)
O1A 0.20268 (10) 0.06597 (3) 0.33830 (10) 0.0250 (2)
N1A 0.45402 (11) 0.17270 (3) 0.24759 (11) 0.0165 (2)
N2A 0.34340 (10) 0.11725 (3) 0.31666 (11) 0.0153 (2)
C1A 0.39888 (12) 0.13899 (4) 0.22017 (12) 0.0146 (2)
C2A 0.26620 (13) 0.08498 (4) 0.26862 (13) 0.0172 (2)
C3A 0.27051 (12) 0.07864 (4) 0.12030 (13) 0.0162 (2)
C4A 0.19911 (13) 0.04982 (4) 0.05026 (13) 0.0185 (3)
H4A 0.1531 0.0332 0.1041 0.022*
C5A 0.18112 (12) 0.03998 (4) −0.09501 (13) 0.0168 (2)
C6A 0.23784 (14) 0.06091 (4) −0.19309 (14) 0.0212 (3)
H6A 0.2930 0.0829 −0.1656 0.025*
C7A 0.21457 (14) 0.04992 (5) −0.32984 (14) 0.0236 (3)
H7A 0.2545 0.0643 −0.3949 0.028*
C8A 0.13337 (13) 0.01802 (4) −0.37254 (14) 0.0215 (3)
H8A 0.1172 0.0108 −0.4665 0.026*
C9A 0.07626 (14) −0.00315 (4) −0.27756 (14) 0.0235 (3)
H9A 0.0203 −0.0249 −0.3061 0.028*
C10A 0.10086 (13) 0.00749 (4) −0.14036 (14) 0.0211 (3)
H10A 0.0625 −0.0076 −0.0756 0.025*
C11A 0.50187 (12) 0.19422 (4) 0.14188 (12) 0.0147 (2)
C12A 0.59772 (13) 0.17841 (4) 0.07749 (14) 0.0199 (3)
H12A 0.6301 0.1520 0.1011 0.024*
C13A 0.64633 (13) 0.20112 (4) −0.02127 (14) 0.0223 (3)
H13A 0.7124 0.1903 −0.0642 0.027*
C14A 0.59849 (14) 0.23952 (4) −0.05721 (14) 0.0221 (3)
H14A 0.6312 0.2549 −0.1253 0.026*
C15A 0.50274 (14) 0.25535 (4) 0.00649 (15) 0.0237 (3)
H15A 0.4694 0.2815 −0.0188 0.028*
C16A 0.45523 (13) 0.23312 (4) 0.10705 (14) 0.0204 (3)
H16A 0.3911 0.2444 0.1520 0.024*
C17A 0.35528 (12) 0.13144 (4) 0.45589 (12) 0.0152 (2)
C18A 0.46121 (13) 0.12049 (4) 0.54559 (13) 0.0180 (3)
H18A 0.5230 0.1032 0.5166 0.022*
C19A 0.47534 (13) 0.13529 (4) 0.67901 (13) 0.0207 (3)
H19A 0.5470 0.1279 0.7420 0.025*
C20A 0.38492 (13) 0.16079 (4) 0.72006 (13) 0.0200 (3)
H20A 0.3958 0.1713 0.8105 0.024*
C21A 0.27842 (13) 0.17101 (4) 0.62922 (14) 0.0206 (3)
H21A 0.2161 0.1880 0.6583 0.025*
C22A 0.26323 (12) 0.15630 (4) 0.49588 (13) 0.0176 (2)
H22A 0.1909 0.1632 0.4332 0.021*
S1B 0.87010 (3) 0.114166 (10) 0.07134 (3) 0.01700 (8)
O1B 0.68006 (10) 0.07316 (3) 0.34400 (10) 0.0245 (2)
N1B 0.95837 (11) 0.17253 (3) 0.25832 (11) 0.0172 (2)
N2B 0.83667 (10) 0.11966 (3) 0.32700 (11) 0.0162 (2)
C1B 0.89758 (12) 0.13981 (4) 0.23112 (12) 0.0150 (2)
C2B 0.74959 (13) 0.09027 (4) 0.27595 (13) 0.0174 (2)
C3B 0.75375 (12) 0.08386 (4) 0.12809 (13) 0.0168 (2)
C4B 0.67166 (13) 0.05884 (4) 0.05426 (14) 0.0195 (3)
H4B 0.6119 0.0465 0.1030 0.023*
C5B 0.66074 (13) 0.04779 (4) −0.08999 (14) 0.0195 (3)
C6B 0.75221 (14) 0.05608 (4) −0.17333 (14) 0.0233 (3)
H6B 0.8259 0.0706 −0.1370 0.028*
C7B 0.73604 (16) 0.04329 (5) −0.30865 (15) 0.0276 (3)
H7B 0.7981 0.0494 −0.3646 0.033*
C8B 0.62962 (16) 0.02168 (5) −0.36239 (15) 0.0299 (3)
H8B 0.6199 0.0124 −0.4543 0.036*
C9B 0.53774 (16) 0.01368 (5) −0.28224 (15) 0.0323 (4)
H9B 0.4645 −0.0009 −0.3193 0.039*
C10B 0.55234 (14) 0.02700 (4) −0.14759 (15) 0.0254 (3)
H10B 0.4879 0.0219 −0.0938 0.031*
C11B 1.00800 (12) 0.19307 (4) 0.15183 (13) 0.0162 (2)
C12B 1.10058 (13) 0.17597 (4) 0.08498 (14) 0.0197 (3)
H12B 1.1308 0.1493 0.1081 0.024*
C13B 1.14876 (13) 0.19803 (4) −0.01569 (14) 0.0225 (3)
H13B 1.2124 0.1864 −0.0606 0.027*
C14B 1.10450 (14) 0.23687 (4) −0.05078 (14) 0.0237 (3)
H14B 1.1374 0.2518 −0.1199 0.028*
C15B 1.01203 (15) 0.25394 (4) 0.01530 (15) 0.0251 (3)
H15B 0.9811 0.2805 −0.0092 0.030*
C16B 0.96464 (14) 0.23236 (4) 0.11700 (14) 0.0214 (3)
H16B 0.9024 0.2444 0.1632 0.026*
C17B 0.84998 (12) 0.13379 (4) 0.46609 (13) 0.0164 (2)
C18B 0.95529 (13) 0.12222 (4) 0.55533 (14) 0.0203 (3)
H18B 1.0158 0.1045 0.5260 0.024*
C19B 0.97085 (13) 0.13698 (4) 0.68874 (14) 0.0229 (3)
H19B 1.0423 0.1293 0.7514 0.027*
C20B 0.88194 (13) 0.16298 (4) 0.73020 (14) 0.0216 (3)
H20B 0.8935 0.1733 0.8209 0.026*
C21B 0.77625 (13) 0.17394 (4) 0.63987 (14) 0.0215 (3)
H21B 0.7153 0.1915 0.6691 0.026*
C22B 0.75968 (13) 0.15919 (4) 0.50639 (14) 0.0192 (3)
H22B 0.6875 0.1664 0.4440 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01872 (16) 0.01662 (15) 0.01241 (15) −0.00329 (11) 0.00371 (11) −0.00114 (10)
O1A 0.0353 (6) 0.0255 (5) 0.0152 (5) −0.0138 (4) 0.0071 (4) −0.0009 (4)
N1A 0.0200 (6) 0.0162 (5) 0.0136 (5) −0.0024 (4) 0.0030 (4) 0.0006 (4)
N2A 0.0190 (5) 0.0150 (5) 0.0122 (5) −0.0037 (4) 0.0030 (4) 0.0003 (4)
C1A 0.0159 (6) 0.0158 (5) 0.0121 (6) 0.0010 (4) 0.0019 (4) 0.0009 (4)
C2A 0.0212 (6) 0.0158 (5) 0.0145 (6) −0.0023 (5) 0.0023 (5) 0.0004 (4)
C3A 0.0194 (6) 0.0152 (5) 0.0142 (6) −0.0018 (5) 0.0032 (5) 0.0009 (4)
C4A 0.0229 (7) 0.0184 (6) 0.0146 (6) −0.0044 (5) 0.0034 (5) 0.0004 (5)
C5A 0.0182 (6) 0.0174 (6) 0.0146 (6) −0.0008 (5) 0.0016 (5) −0.0010 (4)
C6A 0.0262 (7) 0.0214 (6) 0.0159 (6) −0.0055 (5) 0.0025 (5) −0.0007 (5)
C7A 0.0270 (7) 0.0292 (7) 0.0149 (6) −0.0051 (6) 0.0038 (5) 0.0006 (5)
C8A 0.0227 (7) 0.0274 (7) 0.0134 (6) 0.0015 (5) −0.0010 (5) −0.0030 (5)
C9A 0.0247 (7) 0.0238 (7) 0.0211 (7) −0.0040 (5) 0.0003 (5) −0.0054 (5)
C10A 0.0233 (7) 0.0214 (6) 0.0187 (7) −0.0043 (5) 0.0038 (5) −0.0023 (5)
C11A 0.0164 (6) 0.0150 (5) 0.0123 (6) −0.0035 (4) 0.0009 (4) −0.0006 (4)
C12A 0.0196 (6) 0.0200 (6) 0.0203 (7) 0.0013 (5) 0.0036 (5) 0.0028 (5)
C13A 0.0201 (7) 0.0265 (7) 0.0212 (7) −0.0006 (5) 0.0058 (5) 0.0010 (5)
C14A 0.0246 (7) 0.0244 (7) 0.0171 (7) −0.0063 (5) 0.0025 (5) 0.0045 (5)
C15A 0.0279 (7) 0.0180 (6) 0.0251 (7) −0.0002 (5) 0.0034 (6) 0.0055 (5)
C16A 0.0229 (7) 0.0178 (6) 0.0211 (7) 0.0001 (5) 0.0057 (5) 0.0004 (5)
C17A 0.0194 (6) 0.0155 (5) 0.0107 (6) −0.0041 (5) 0.0023 (4) −0.0002 (4)
C18A 0.0179 (6) 0.0192 (6) 0.0168 (6) −0.0003 (5) 0.0024 (5) 0.0019 (5)
C19A 0.0199 (7) 0.0267 (7) 0.0146 (6) −0.0033 (5) −0.0007 (5) 0.0019 (5)
C20A 0.0253 (7) 0.0227 (6) 0.0123 (6) −0.0071 (5) 0.0034 (5) −0.0006 (5)
C21A 0.0220 (7) 0.0229 (6) 0.0180 (7) −0.0021 (5) 0.0070 (5) −0.0024 (5)
C22A 0.0173 (6) 0.0192 (6) 0.0162 (6) −0.0015 (5) 0.0018 (5) 0.0007 (5)
S1B 0.01907 (17) 0.01822 (15) 0.01406 (16) −0.00326 (11) 0.00352 (12) −0.00196 (11)
O1B 0.0306 (6) 0.0250 (5) 0.0192 (5) −0.0105 (4) 0.0082 (4) −0.0019 (4)
N1B 0.0190 (5) 0.0175 (5) 0.0152 (5) −0.0015 (4) 0.0025 (4) 0.0002 (4)
N2B 0.0185 (5) 0.0175 (5) 0.0130 (5) −0.0028 (4) 0.0031 (4) −0.0006 (4)
C1B 0.0151 (6) 0.0171 (5) 0.0126 (6) 0.0011 (4) 0.0016 (4) 0.0000 (4)
C2B 0.0198 (6) 0.0153 (5) 0.0169 (6) −0.0017 (5) 0.0027 (5) −0.0011 (4)
C3B 0.0191 (6) 0.0161 (5) 0.0156 (6) −0.0014 (5) 0.0039 (5) −0.0009 (4)
C4B 0.0214 (7) 0.0178 (6) 0.0193 (7) −0.0028 (5) 0.0035 (5) −0.0006 (5)
C5B 0.0236 (7) 0.0170 (6) 0.0172 (6) −0.0012 (5) 0.0003 (5) −0.0004 (5)
C6B 0.0258 (7) 0.0234 (6) 0.0208 (7) −0.0048 (5) 0.0035 (5) −0.0043 (5)
C7B 0.0349 (9) 0.0298 (7) 0.0188 (7) −0.0031 (6) 0.0065 (6) −0.0029 (6)
C8B 0.0370 (9) 0.0350 (8) 0.0156 (7) −0.0032 (7) −0.0028 (6) −0.0031 (6)
C9B 0.0336 (9) 0.0403 (9) 0.0202 (7) −0.0108 (7) −0.0054 (6) −0.0034 (6)
C10B 0.0266 (8) 0.0277 (7) 0.0207 (7) −0.0041 (6) −0.0009 (6) 0.0011 (5)
C11B 0.0169 (6) 0.0171 (5) 0.0139 (6) −0.0042 (5) 0.0004 (5) −0.0004 (4)
C12B 0.0181 (6) 0.0201 (6) 0.0208 (7) 0.0008 (5) 0.0021 (5) 0.0028 (5)
C13B 0.0184 (7) 0.0284 (7) 0.0209 (7) −0.0006 (5) 0.0040 (5) 0.0012 (5)
C14B 0.0243 (7) 0.0271 (7) 0.0190 (7) −0.0066 (6) 0.0012 (5) 0.0054 (5)
C15B 0.0302 (8) 0.0189 (6) 0.0257 (7) −0.0014 (5) 0.0020 (6) 0.0046 (5)
C16B 0.0233 (7) 0.0189 (6) 0.0222 (7) 0.0002 (5) 0.0043 (5) 0.0001 (5)
C17B 0.0196 (6) 0.0171 (6) 0.0126 (6) −0.0041 (5) 0.0027 (5) −0.0001 (4)
C18B 0.0198 (7) 0.0226 (6) 0.0182 (7) 0.0003 (5) 0.0019 (5) 0.0000 (5)
C19B 0.0213 (7) 0.0291 (7) 0.0171 (7) −0.0021 (5) −0.0012 (5) 0.0021 (5)
C20B 0.0235 (7) 0.0270 (7) 0.0142 (6) −0.0068 (5) 0.0028 (5) −0.0019 (5)
C21B 0.0212 (7) 0.0260 (7) 0.0180 (7) −0.0008 (5) 0.0056 (5) −0.0022 (5)
C22B 0.0181 (6) 0.0221 (6) 0.0171 (6) −0.0008 (5) 0.0023 (5) −0.0001 (5)

Geometric parameters (Å, °)

S1A—C3A 1.7544 (13) S1B—C3B 1.7553 (13)
S1A—C1A 1.7764 (13) S1B—C1B 1.7762 (13)
O1A—C2A 1.2124 (15) O1B—C2B 1.2151 (16)
N1A—C1A 1.2653 (16) N1B—C1B 1.2654 (16)
N1A—C11A 1.4192 (16) N1B—C11B 1.4189 (16)
N2A—C2A 1.3863 (16) N2B—C2B 1.3879 (16)
N2A—C1A 1.3940 (16) N2B—C1B 1.3960 (16)
N2A—C17A 1.4414 (15) N2B—C17B 1.4387 (16)
C2A—C3A 1.4891 (17) C2B—C3B 1.4846 (18)
C3A—C4A 1.3452 (17) C3B—C4B 1.3418 (18)
C4A—C5A 1.4577 (18) C4B—C5B 1.4600 (18)
C4A—H4A 0.9500 C4B—H4B 0.9500
C5A—C6A 1.3997 (18) C5B—C10B 1.4003 (19)
C5A—C10A 1.4039 (18) C5B—C6B 1.401 (2)
C6A—C7A 1.3867 (19) C6B—C7B 1.389 (2)
C6A—H6A 0.9500 C6B—H6B 0.9500
C7A—C8A 1.3893 (19) C7B—C8B 1.387 (2)
C7A—H7A 0.9500 C7B—H7B 0.9500
C8A—C9A 1.383 (2) C8B—C9B 1.381 (2)
C8A—H8A 0.9500 C8B—H8B 0.9500
C9A—C10A 1.3887 (19) C9B—C10B 1.388 (2)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.3909 (18) C11B—C12B 1.3930 (19)
C11A—C16A 1.3952 (18) C11B—C16B 1.3960 (18)
C12A—C13A 1.3902 (19) C12B—C13B 1.3912 (19)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.387 (2) C13B—C14B 1.386 (2)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.386 (2) C14B—C15B 1.387 (2)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.3898 (19) C15B—C16B 1.3868 (19)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—H16A 0.9500 C16B—H16B 0.9500
C17A—C22A 1.3855 (18) C17B—C22B 1.3831 (19)
C17A—C18A 1.3873 (18) C17B—C18B 1.3854 (18)
C18A—C19A 1.3933 (18) C18B—C19B 1.3925 (19)
C18A—H18A 0.9500 C18B—H18B 0.9500
C19A—C20A 1.389 (2) C19B—C20B 1.389 (2)
C19A—H19A 0.9500 C19B—H19B 0.9500
C20A—C21A 1.3917 (19) C20B—C21B 1.389 (2)
C20A—H20A 0.9500 C20B—H20B 0.9500
C21A—C22A 1.3914 (18) C21B—C22B 1.3928 (18)
C21A—H21A 0.9500 C21B—H21B 0.9500
C22A—H22A 0.9500 C22B—H22B 0.9500
C3A—S1A—C1A 91.58 (6) C3B—S1B—C1B 91.01 (6)
C1A—N1A—C11A 119.08 (11) C1B—N1B—C11B 118.95 (11)
C2A—N2A—C1A 116.85 (10) C2B—N2B—C1B 116.21 (10)
C2A—N2A—C17A 122.60 (10) C2B—N2B—C17B 122.62 (11)
C1A—N2A—C17A 120.13 (10) C1B—N2B—C17B 120.41 (10)
N1A—C1A—N2A 122.34 (11) N1B—C1B—N2B 122.48 (11)
N1A—C1A—S1A 127.49 (10) N1B—C1B—S1B 127.18 (10)
N2A—C1A—S1A 110.10 (9) N2B—C1B—S1B 110.28 (9)
O1A—C2A—N2A 123.92 (12) O1B—C2B—N2B 123.92 (12)
O1A—C2A—C3A 126.13 (12) O1B—C2B—C3B 126.16 (12)
N2A—C2A—C3A 109.91 (11) N2B—C2B—C3B 109.91 (11)
C4A—C3A—C2A 120.50 (12) C4B—C3B—C2B 120.68 (12)
C4A—C3A—S1A 128.61 (10) C4B—C3B—S1B 128.12 (10)
C2A—C3A—S1A 110.86 (9) C2B—C3B—S1B 111.14 (9)
C3A—C4A—C5A 130.30 (12) C3B—C4B—C5B 129.51 (13)
C3A—C4A—H4A 114.8 C3B—C4B—H4B 115.2
C5A—C4A—H4A 114.8 C5B—C4B—H4B 115.2
C6A—C5A—C10A 117.50 (12) C10B—C5B—C6B 118.19 (13)
C6A—C5A—C4A 124.47 (12) C10B—C5B—C4B 117.50 (13)
C10A—C5A—C4A 118.03 (12) C6B—C5B—C4B 124.30 (13)
C7A—C6A—C5A 120.90 (13) C7B—C6B—C5B 120.54 (14)
C7A—C6A—H6A 119.6 C7B—C6B—H6B 119.7
C5A—C6A—H6A 119.6 C5B—C6B—H6B 119.7
C6A—C7A—C8A 120.55 (13) C8B—C7B—C6B 120.27 (14)
C6A—C7A—H7A 119.7 C8B—C7B—H7B 119.9
C8A—C7A—H7A 119.7 C6B—C7B—H7B 119.9
C9A—C8A—C7A 119.64 (12) C9B—C8B—C7B 119.97 (14)
C9A—C8A—H8A 120.2 C9B—C8B—H8B 120.0
C7A—C8A—H8A 120.2 C7B—C8B—H8B 120.0
C8A—C9A—C10A 119.83 (13) C8B—C9B—C10B 120.04 (14)
C8A—C9A—H9A 120.1 C8B—C9B—H9B 120.0
C10A—C9A—H9A 120.1 C10B—C9B—H9B 120.0
C9A—C10A—C5A 121.57 (13) C9B—C10B—C5B 120.95 (14)
C9A—C10A—H10A 119.2 C9B—C10B—H10B 119.5
C5A—C10A—H10A 119.2 C5B—C10B—H10B 119.5
C12A—C11A—C16A 119.51 (12) C12B—C11B—C16B 119.44 (12)
C12A—C11A—N1A 121.76 (11) C12B—C11B—N1B 122.37 (12)
C16A—C11A—N1A 118.65 (11) C16B—C11B—N1B 118.16 (12)
C13A—C12A—C11A 120.24 (12) C13B—C12B—C11B 119.92 (13)
C13A—C12A—H12A 119.9 C13B—C12B—H12B 120.0
C11A—C12A—H12A 119.9 C11B—C12B—H12B 120.0
C14A—C13A—C12A 120.13 (13) C14B—C13B—C12B 120.39 (13)
C14A—C13A—H13A 119.9 C14B—C13B—H13B 119.8
C12A—C13A—H13A 119.9 C12B—C13B—H13B 119.8
C15A—C14A—C13A 119.81 (13) C13B—C14B—C15B 119.84 (13)
C15A—C14A—H14A 120.1 C13B—C14B—H14B 120.1
C13A—C14A—H14A 120.1 C15B—C14B—H14B 120.1
C14A—C15A—C16A 120.37 (13) C16B—C15B—C14B 120.13 (13)
C14A—C15A—H15A 119.8 C16B—C15B—H15B 119.9
C16A—C15A—H15A 119.8 C14B—C15B—H15B 119.9
C15A—C16A—C11A 119.92 (13) C15B—C16B—C11B 120.27 (13)
C15A—C16A—H16A 120.0 C15B—C16B—H16B 119.9
C11A—C16A—H16A 120.0 C11B—C16B—H16B 119.9
C22A—C17A—C18A 121.78 (12) C22B—C17B—C18B 121.81 (12)
C22A—C17A—N2A 119.68 (11) C22B—C17B—N2B 119.55 (12)
C18A—C17A—N2A 118.52 (11) C18B—C17B—N2B 118.63 (12)
C17A—C18A—C19A 118.80 (12) C17B—C18B—C19B 118.86 (13)
C17A—C18A—H18A 120.6 C17B—C18B—H18B 120.6
C19A—C18A—H18A 120.6 C19B—C18B—H18B 120.6
C20A—C19A—C18A 120.13 (13) C20B—C19B—C18B 120.02 (13)
C20A—C19A—H19A 119.9 C20B—C19B—H19B 120.0
C18A—C19A—H19A 119.9 C18B—C19B—H19B 120.0
C19A—C20A—C21A 120.29 (12) C19B—C20B—C21B 120.38 (13)
C19A—C20A—H20A 119.9 C19B—C20B—H20B 119.8
C21A—C20A—H20A 119.9 C21B—C20B—H20B 119.8
C22A—C21A—C20A 120.02 (13) C20B—C21B—C22B 119.97 (13)
C22A—C21A—H21A 120.0 C20B—C21B—H21B 120.0
C20A—C21A—H21A 120.0 C22B—C21B—H21B 120.0
C17A—C22A—C21A 118.97 (12) C17B—C22B—C21B 118.94 (13)
C17A—C22A—H22A 120.5 C17B—C22B—H22B 120.5
C21A—C22A—H22A 120.5 C21B—C22B—H22B 120.5
C11A—N1A—C1A—N2A −176.35 (11) C11B—N1B—C1B—N2B −174.35 (11)
C11A—N1A—C1A—S1A 0.28 (18) C11B—N1B—C1B—S1B 2.64 (18)
C2A—N2A—C1A—N1A 168.24 (12) C2B—N2B—C1B—N1B 164.86 (12)
C17A—N2A—C1A—N1A −4.49 (19) C17B—N2B—C1B—N1B −5.38 (19)
C2A—N2A—C1A—S1A −8.91 (14) C2B—N2B—C1B—S1B −12.58 (14)
C17A—N2A—C1A—S1A 178.36 (9) C17B—N2B—C1B—S1B 177.18 (9)
C3A—S1A—C1A—N1A −169.45 (13) C3B—S1B—C1B—N1B −166.12 (13)
C3A—S1A—C1A—N2A 7.52 (10) C3B—S1B—C1B—N2B 11.17 (10)
C1A—N2A—C2A—O1A −172.66 (13) C1B—N2B—C2B—O1B −172.17 (13)
C17A—N2A—C2A—O1A −0.1 (2) C17B—N2B—C2B—O1B −2.2 (2)
C1A—N2A—C2A—C3A 5.38 (16) C1B—N2B—C2B—C3B 6.89 (16)
C17A—N2A—C2A—C3A 177.92 (11) C17B—N2B—C2B—C3B 176.89 (11)
O1A—C2A—C3A—C4A 0.5 (2) O1B—C2B—C3B—C4B 3.7 (2)
N2A—C2A—C3A—C4A −177.54 (12) N2B—C2B—C3B—C4B −175.32 (12)
O1A—C2A—C3A—S1A 178.68 (12) O1B—C2B—C3B—S1B −178.94 (12)
N2A—C2A—C3A—S1A 0.69 (14) N2B—C2B—C3B—S1B 2.02 (14)
C1A—S1A—C3A—C4A 173.38 (13) C1B—S1B—C3B—C4B 169.61 (13)
C1A—S1A—C3A—C2A −4.67 (10) C1B—S1B—C3B—C2B −7.49 (10)
C2A—C3A—C4A—C5A 175.30 (13) C2B—C3B—C4B—C5B −178.83 (13)
S1A—C3A—C4A—C5A −2.6 (2) S1B—C3B—C4B—C5B 4.3 (2)
C3A—C4A—C5A—C6A −1.2 (2) C3B—C4B—C5B—C10B −168.33 (14)
C3A—C4A—C5A—C10A 179.25 (14) C3B—C4B—C5B—C6B 12.7 (2)
C10A—C5A—C6A—C7A 0.4 (2) C10B—C5B—C6B—C7B −1.1 (2)
C4A—C5A—C6A—C7A −179.19 (13) C4B—C5B—C6B—C7B 177.88 (13)
C5A—C6A—C7A—C8A 0.6 (2) C5B—C6B—C7B—C8B −0.8 (2)
C6A—C7A—C8A—C9A −0.6 (2) C6B—C7B—C8B—C9B 1.6 (2)
C7A—C8A—C9A—C10A −0.3 (2) C7B—C8B—C9B—C10B −0.5 (3)
C8A—C9A—C10A—C5A 1.2 (2) C8B—C9B—C10B—C5B −1.5 (2)
C6A—C5A—C10A—C9A −1.3 (2) C6B—C5B—C10B—C9B 2.2 (2)
C4A—C5A—C10A—C9A 178.32 (13) C4B—C5B—C10B—C9B −176.82 (14)
C1A—N1A—C11A—C12A −64.30 (17) C1B—N1B—C11B—C12B −64.65 (17)
C1A—N1A—C11A—C16A 118.93 (14) C1B—N1B—C11B—C16B 117.54 (14)
C16A—C11A—C12A—C13A −0.3 (2) C16B—C11B—C12B—C13B −0.1 (2)
N1A—C11A—C12A—C13A −177.02 (12) N1B—C11B—C12B—C13B −177.89 (12)
C11A—C12A—C13A—C14A −0.7 (2) C11B—C12B—C13B—C14B −0.5 (2)
C12A—C13A—C14A—C15A 0.6 (2) C12B—C13B—C14B—C15B 0.3 (2)
C13A—C14A—C15A—C16A 0.6 (2) C13B—C14B—C15B—C16B 0.5 (2)
C14A—C15A—C16A—C11A −1.6 (2) C14B—C15B—C16B—C11B −1.1 (2)
C12A—C11A—C16A—C15A 1.4 (2) C12B—C11B—C16B—C15B 0.9 (2)
N1A—C11A—C16A—C15A 178.27 (12) N1B—C11B—C16B—C15B 178.82 (12)
C2A—N2A—C17A—C22A −79.01 (16) C2B—N2B—C17B—C22B −73.31 (16)
C1A—N2A—C17A—C22A 93.29 (15) C1B—N2B—C17B—C22B 96.28 (15)
C2A—N2A—C17A—C18A 102.61 (15) C2B—N2B—C17B—C18B 108.23 (15)
C1A—N2A—C17A—C18A −85.09 (15) C1B—N2B—C17B—C18B −82.17 (16)
C22A—C17A—C18A—C19A −0.57 (19) C22B—C17B—C18B—C19B −0.7 (2)
N2A—C17A—C18A—C19A 177.78 (11) N2B—C17B—C18B—C19B 177.73 (12)
C17A—C18A—C19A—C20A −0.5 (2) C17B—C18B—C19B—C20B −0.3 (2)
C18A—C19A—C20A—C21A 1.4 (2) C18B—C19B—C20B—C21B 1.0 (2)
C19A—C20A—C21A—C22A −1.2 (2) C19B—C20B—C21B—C22B −0.7 (2)
C18A—C17A—C22A—C21A 0.78 (19) C18B—C17B—C22B—C21B 0.9 (2)
N2A—C17A—C22A—C21A −177.56 (11) N2B—C17B—C22B—C21B −177.47 (12)
C20A—C21A—C22A—C17A 0.1 (2) C20B—C21B—C22B—C17B −0.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12A—H12A···S1B 0.95 2.92 3.6214 (15) 131
C12A—H12A···C2B 0.95 2.85 3.7340 (19) 156
C12A—H12A···C3B 0.95 2.59 3.5270 (19) 167
C12B—H12B···S1Ai 0.95 2.96 3.6118 (15) 127
C12B—H12B···C3Ai 0.95 2.76 3.6700 (19) 162

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2385).

References

  1. Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432. [DOI] [PubMed]
  2. Babu, B., Lee, M., Lee, L., Strobel, R., Brockway, O., Nickols, A., Sjoholm, R., Tzou, S., Chavda, S., Desta, D., Fraley, G., Siegfried, A., Pennington, W., Hartley, H. M., Westbrook, C., Mooberry, S. L., Kiakos, K., Hartley, J. A. & Lee, M. (2011). Bioorg. Med. Chem. 19, 2359–2367. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chavda, S., Davis, R., Ferguson, A., Riddering, C., Dittenhafer, K., Mackay, H., Babu, B., Lee, M., Siegfried, A., Pennington, W., Shadfan, M., Mooberry, S., Mishra, B. K. & Pati, H. N. (2009). Lett. Drug Des. Discov. pp. 531–537.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Satam, V. S., Bandi, R. K., Behera, A. K., Mishra, B. K., Brockway, O., Tzou, S., Zeller, M., Pati, H. N. & Lee, M. (2011). Lett. Drug. Design Discov. In the press. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023658/gk2385sup1.cif

e-67-o1781-sup1.cif (42.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023658/gk2385Isup2.hkl

e-67-o1781-Isup2.hkl (493KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023658/gk2385Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES