Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):o1628. doi: 10.1107/S1600536811021714

2-(Naphthalen-1-yl­amino)­cyclo­hexa­nol

Rachid Outouch a, Brahim Boualy a, Mustapha Ait Ali a, Larbi El Firdoussi a, Corrado Rizzoli b,*
PMCID: PMC3152018  PMID: 21837034

Abstract

The title compound, C16H19NO, was synthesized under solvent-free conditions by reaction of 7-oxa-bicyclo­[4.1.0]heptane and naphthalen-1-amine in the presence of Ca(CF3COO)2 as catalyst. The cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions into chains parallel to the c axis.

Related literature

For background to applications of β-amino­alcohols in organic synthesis, see: Rogers et al. (1989); O’Brien (1999); Ager et al. (1996). For the synthesis of β-amino­alcohols, see: Deyrup & Moyer (1969); Kamal, Ramu et al. (2005); Yarapathy et al. (2006); Yadav et al. (2003); Rafiee et al. (2004); Robin et al. (2007); Das et al. (2000); Kamal, Adil & Arifuddin (2005). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o1628-scheme1.jpg

Experimental

Crystal data

  • C16H19NO

  • M r = 241.32

  • Orthorhombic, Inline graphic

  • a = 12.0278 (4) Å

  • b = 11.5910 (3) Å

  • c = 9.5566 (3) Å

  • V = 1332.33 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 294 K

  • 0.18 × 0.15 × 0.10 mm

Data collection

  • Siemens AED diffractometer

  • 4933 measured reflections

  • 1353 independent reflections

  • 1326 reflections with I > 2σ(I)

  • R int = 0.034

  • 3 standard reflections every 100 reflections intensity decay: 0.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.087

  • S = 1.08

  • 1353 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: AED (Belletti et al., 1993); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021714/zl2377sup1.cif

e-67-o1628-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021714/zl2377Isup2.hkl

e-67-o1628-Isup2.hkl (66.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021714/zl2377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C11/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (3) 2.30 (3) 3.125 (2) 171 (2)
C14—H14⋯Cg1i 0.93 2.71 3.530 (3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

supplementary crystallographic information

Comment

β-Amino alcohols are useful organic intermediates owing to their versatility as building blocks in the synthesis of several biologically active natural products (Rogers et al., 1989), unnatural amino acids (O'Brien, 1999) and chiral auxiliaries (Ager et al., 1996). These compounds are traditionally synthesized by direct treatment of epoxides with excessive amounts of amines at elevated temperatures (Deyrup & Moyer, 1969). Under such conditions, less reactive epoxides and sluggish amines react slowly and sensitive functional groups undergo undesirable side reactions. Many alterations were made in recent years to enhance the synthetic scope of this reaction by the use of Lewis acid catalysis (Kamal, Ramu et al., 2005), solid phase synthesis (Yarapathy et al., 2006), ionic liquids (Yadav et al., 2003), heteropolyacids (Rafiee et al., 2004), microwave irradiation (Robin et al., 2007), fluorinated solvents (Das et al., 2000), and ultrasound mediation (Kamal, Adil & Arifuddin, 2005). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title amino alcohol.

In the molecule of the title compound (Fig. 1), the cyclohexane ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5765 (19) Å, θ = 2.6 (2)° and φ = 31 (5)°. The hydroxy and amine substituent to the ring are equatorially oriented. In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1) link the molecules into chains running parallel to the c axis.

Experimental

In a screw capped vial equipped with a magnetic stirrer, Ca(CF3CO2)2 (0.03 g, 0.11 mmol) was added to naphthalen-1-amine (0.293 g, 2.04 mmol) and 7-oxa-bicyclo[4.1.0]heptane (0.481 g, 2.00 mmol), and the resulting mixture was left under vigorous stirring at 313 K (40°C) for 31 h. The mixture was extracted with AcOEt (3 × 10 ml), and the combined organic layers were dried over anhydrous Na2SO4. The combined filtrates were concentrated under vacuum to afford the title product (276 mg, yield 56%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution. M.p. 366–367 K.

Refinement

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous scattering effects, 460 Friedel pairs were merged in the last cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound showing the formation of molecular chains along the a axis via intermolecular N—H···O hydrogen bonds (red dashed lines) and C—H···π interactions (green dashed lines).

Crystal data

C16H19NO F(000) = 520
Mr = 241.32 Dx = 1.203 Mg m3
Orthorhombic, Pca21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2ac Cell parameters from 48 reflections
a = 12.0278 (4) Å θ = 16.7–36.3°
b = 11.5910 (3) Å µ = 0.58 mm1
c = 9.5566 (3) Å T = 294 K
V = 1332.33 (7) Å3 Block, pale-blue
Z = 4 0.18 × 0.15 × 0.10 mm

Data collection

Siemens AED diffractometer Rint = 0.034
Radiation source: fine-focus sealed tube θmax = 69.9°, θmin = 3.8°
graphite h = −14→13
θ/2θ scans k = −14→13
4933 measured reflections l = −11→5
1353 independent reflections 3 standard reflections every 100 reflections
1326 reflections with I > 2σ(I) intensity decay: 0.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0897P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1353 reflections Δρmax = 0.14 e Å3
169 parameters Δρmin = −0.13 e Å3
1 restraint Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0102 (11)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27577 (13) −0.01165 (12) 0.00639 (19) 0.0690 (4)
H1O 0.2788 0.0522 0.0431 0.104*
N1 0.14586 (12) 0.08201 (12) 0.21600 (17) 0.0491 (3)
H1N 0.1730 (16) 0.0622 (17) 0.292 (3) 0.054 (5)*
C1 0.20467 (14) −0.08488 (14) 0.08667 (19) 0.0471 (4)
H1 0.2464 −0.1137 0.1675 0.057*
C2 0.16883 (16) −0.18640 (16) −0.0013 (2) 0.0572 (4)
H2A 0.2339 −0.2284 −0.0331 0.069*
H2B 0.1288 −0.1591 −0.0829 0.069*
C3 0.09482 (17) −0.26593 (17) 0.0831 (3) 0.0661 (6)
H3A 0.1366 −0.2976 0.1609 0.079*
H3B 0.0706 −0.3296 0.0246 0.079*
C4 −0.00636 (18) −0.20139 (19) 0.1385 (3) 0.0747 (7)
H4A −0.0500 −0.2527 0.1969 0.090*
H4B −0.0525 −0.1774 0.0605 0.090*
C5 0.02757 (15) −0.09561 (16) 0.2233 (2) 0.0577 (5)
H5A −0.0384 −0.0529 0.2503 0.069*
H5B 0.0651 −0.1202 0.3081 0.069*
C6 0.10412 (13) −0.01752 (13) 0.13964 (18) 0.0458 (4)
H6 0.0628 0.0107 0.0582 0.055*
C7 0.08882 (12) 0.18703 (14) 0.22162 (18) 0.0431 (3)
C8 −0.01028 (14) 0.20562 (15) 0.1532 (2) 0.0500 (4)
H8 −0.0435 0.1456 0.1040 0.060*
C9 −0.06185 (15) 0.31447 (17) 0.1569 (2) 0.0583 (5)
H9 −0.1284 0.3253 0.1091 0.070*
C10 −0.01684 (16) 0.40383 (17) 0.2286 (3) 0.0609 (5)
H10 −0.0527 0.4749 0.2303 0.073*
C11 0.08457 (15) 0.38906 (15) 0.3007 (2) 0.0530 (4)
C12 0.1337 (2) 0.47978 (17) 0.3771 (3) 0.0687 (6)
H12 0.0984 0.5511 0.3805 0.082*
C13 0.2316 (2) 0.46537 (17) 0.4458 (3) 0.0744 (6)
H13 0.2618 0.5261 0.4968 0.089*
C14 0.28733 (17) 0.35946 (17) 0.4400 (3) 0.0630 (5)
H14 0.3550 0.3504 0.4859 0.076*
C15 0.24238 (16) 0.26941 (14) 0.3671 (2) 0.0508 (4)
H15 0.2803 0.1995 0.3636 0.061*
C16 0.13946 (13) 0.28016 (13) 0.29679 (17) 0.0443 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0746 (9) 0.0685 (8) 0.0640 (9) −0.0070 (7) 0.0230 (8) 0.0016 (8)
N1 0.0558 (8) 0.0455 (7) 0.0460 (8) 0.0049 (6) −0.0107 (7) −0.0054 (7)
C1 0.0484 (8) 0.0510 (8) 0.0419 (8) 0.0012 (7) 0.0005 (7) 0.0008 (7)
C2 0.0614 (10) 0.0588 (9) 0.0513 (10) 0.0102 (8) −0.0018 (8) −0.0113 (9)
C3 0.0658 (11) 0.0534 (10) 0.0793 (14) −0.0043 (8) 0.0012 (11) −0.0181 (10)
C4 0.0556 (10) 0.0691 (13) 0.0995 (19) −0.0144 (9) 0.0103 (12) −0.0260 (13)
C5 0.0532 (9) 0.0604 (10) 0.0595 (11) −0.0051 (8) 0.0087 (9) −0.0113 (9)
C6 0.0478 (7) 0.0490 (8) 0.0407 (9) 0.0029 (6) −0.0057 (7) −0.0039 (7)
C7 0.0445 (7) 0.0460 (8) 0.0389 (8) 0.0010 (6) 0.0033 (7) 0.0017 (7)
C8 0.0462 (8) 0.0537 (9) 0.0501 (10) −0.0019 (7) −0.0029 (7) 0.0006 (8)
C9 0.0486 (9) 0.0647 (10) 0.0616 (11) 0.0069 (8) −0.0053 (9) 0.0068 (10)
C10 0.0596 (10) 0.0545 (10) 0.0684 (12) 0.0133 (8) 0.0016 (10) 0.0020 (9)
C11 0.0580 (9) 0.0501 (8) 0.0508 (10) 0.0029 (7) 0.0059 (8) −0.0026 (8)
C12 0.0814 (13) 0.0501 (9) 0.0747 (15) 0.0058 (9) −0.0010 (12) −0.0125 (10)
C13 0.0828 (15) 0.0594 (10) 0.0811 (15) −0.0082 (10) −0.0099 (13) −0.0226 (12)
C14 0.0622 (10) 0.0653 (10) 0.0616 (11) −0.0076 (9) −0.0105 (9) −0.0066 (10)
C15 0.0516 (8) 0.0516 (8) 0.0491 (9) −0.0001 (8) −0.0023 (8) −0.0023 (8)
C16 0.0478 (8) 0.0466 (8) 0.0385 (8) −0.0007 (6) 0.0044 (7) −0.0003 (7)

Geometric parameters (Å, °)

O1—C1 1.428 (2) C6—H6 0.9800
O1—H1O 0.8200 C7—C8 1.377 (2)
N1—C7 1.398 (2) C7—C16 1.433 (2)
N1—C6 1.454 (2) C8—C9 1.406 (2)
N1—H1N 0.83 (3) C8—H8 0.9300
C1—C2 1.509 (2) C9—C10 1.355 (3)
C1—C6 1.526 (2) C9—H9 0.9300
C1—H1 0.9800 C10—C11 1.411 (3)
C2—C3 1.514 (3) C10—H10 0.9300
C2—H2A 0.9700 C11—C12 1.410 (3)
C2—H2B 0.9700 C11—C16 1.425 (2)
C3—C4 1.523 (3) C12—C13 1.359 (4)
C3—H3A 0.9700 C12—H12 0.9300
C3—H3B 0.9700 C13—C14 1.399 (3)
C4—C5 1.526 (3) C13—H13 0.9300
C4—H4A 0.9700 C14—C15 1.367 (3)
C4—H4B 0.9700 C14—H14 0.9300
C5—C6 1.519 (3) C15—C16 1.414 (3)
C5—H5A 0.9700 C15—H15 0.9300
C5—H5B 0.9700
C1—O1—H1O 109.5 N1—C6—C1 107.38 (13)
C7—N1—C6 122.71 (14) C5—C6—C1 110.50 (13)
C7—N1—H1N 113.6 (15) N1—C6—H6 108.0
C6—N1—H1N 110.9 (14) C5—C6—H6 108.0
O1—C1—C2 109.60 (16) C1—C6—H6 108.0
O1—C1—C6 110.40 (13) C8—C7—N1 122.87 (15)
C2—C1—C6 110.94 (14) C8—C7—C16 119.24 (15)
O1—C1—H1 108.6 N1—C7—C16 117.81 (14)
C2—C1—H1 108.6 C7—C8—C9 120.67 (17)
C6—C1—H1 108.6 C7—C8—H8 119.7
C1—C2—C3 110.28 (17) C9—C8—H8 119.7
C1—C2—H2A 109.6 C10—C9—C8 121.51 (17)
C3—C2—H2A 109.6 C10—C9—H9 119.2
C1—C2—H2B 109.6 C8—C9—H9 119.2
C3—C2—H2B 109.6 C9—C10—C11 119.97 (17)
H2A—C2—H2B 108.1 C9—C10—H10 120.0
C2—C3—C4 110.83 (17) C11—C10—H10 120.0
C2—C3—H3A 109.5 C12—C11—C10 121.65 (17)
C4—C3—H3A 109.5 C12—C11—C16 118.67 (18)
C2—C3—H3B 109.5 C10—C11—C16 119.68 (16)
C4—C3—H3B 109.5 C13—C12—C11 121.47 (19)
H3A—C3—H3B 108.1 C13—C12—H12 119.3
C3—C4—C5 111.45 (16) C11—C12—H12 119.3
C3—C4—H4A 109.3 C12—C13—C14 120.24 (19)
C5—C4—H4A 109.3 C12—C13—H13 119.9
C3—C4—H4B 109.3 C14—C13—H13 119.9
C5—C4—H4B 109.3 C15—C14—C13 120.04 (19)
H4A—C4—H4B 108.0 C15—C14—H14 120.0
C6—C5—C4 111.16 (18) C13—C14—H14 120.0
C6—C5—H5A 109.4 C14—C15—C16 121.42 (17)
C4—C5—H5A 109.4 C14—C15—H15 119.3
C6—C5—H5B 109.4 C16—C15—H15 119.3
C4—C5—H5B 109.4 C15—C16—C11 118.12 (15)
H5A—C5—H5B 108.0 C15—C16—C7 122.96 (14)
N1—C6—C5 114.69 (15) C11—C16—C7 118.92 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C11/C16 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (3) 2.30 (3) 3.125 (2) 171 (2)
C14—H14···Cg1i 0.93 2.71 3.530 (3) 148

Symmetry codes: (i) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2377).

References

  1. Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–875. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Das, U., Crousse, B., Kesavan, V., Bonnet-Delpon, D. & Begue, J. P. (2000). J. Org. Chem. 65, 6749–6751. [DOI] [PubMed]
  6. Deyrup, J. A. & Moyer, C. L. (1969). J. Org. Chem. 34, 175–179.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Kamal, A., Adil, S. F. & Arifuddin, M. (2005). Ultrason. Sonochem. 12, 429–431. [DOI] [PubMed]
  9. Kamal, A., Ramu, R., Azhar, M. A. & Khanna, G. B. R. (2005). Tetrahedron Lett. 46, 2675–2677.
  10. Keller, E. (1997). SCHAKAL97 University of Freiburg, Germany.
  11. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  12. O’Brien, P. (1999). Angew. Chem. Int. Ed. 38, 326–329.
  13. Rafiee, E., Tangestaninejad, S., Habibi, M. H. & Mirkhani, V. (2004). Synth. Commun. 34, 3673–3681.
  14. Robin, A., Brown, F., Bahamontes-Rosa, N., Wu, B., Beitz, E., Kun, J. F. J. & Flitsch, S. L. (2007). J. Med. Chem. 50, 4243–4249. [DOI] [PubMed]
  15. Rogers, G. A., Parsons, S. M., Anderson, D. C., Nilsson, L. M., Bahr, B. A., Kornreich, W. D., Kaufman, R., Jacobs, R. S. & Kirtman, B. (1989). J. Med. Chem. 32, 1217–1230. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Yadav, J. S., Reddy, B. V. S., Basak, A. K. & Narsaiah, A. V. (2003). Tetrahedron Lett. 44, 1047–1050.
  18. Yarapathy, V. R., Mekala, S., Rao, B. V. & Tammishetti, S. (2006). Catal. Commun. 7, 466–471.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021714/zl2377sup1.cif

e-67-o1628-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021714/zl2377Isup2.hkl

e-67-o1628-Isup2.hkl (66.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021714/zl2377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES